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Abstract. In this paper, we extend a rank 2 intersection type system
with gradual types. We then show that the problem of finding a principal
typing for a lambda term, in a rank 2 gradual intersection type system
is decidable. We present a type inference algorithm which builds the
principal typing of a term through the generation of type constraints
which are solved by a new extended unification algorithm constructing
the most general unifier for rank 2 gradual intersection types.

1 Introduction

Gradual typing [5,6,11,12] has earned a great deal of attention in the types re-
search community. Aiming to seamlessly integrate static and dynamic typing, its
focus is on enabling the fine-tuning of the distribution of static and dynamic type
checking in a program, and to harness the strengths of both typing disciplines.
The successful application [11] of gradual typing to the parametric polymorphic
Hindley-Milner (HM) type system [9,14,20] marks an important breakthrough,
showing that it is possible to apply it to statically typed functional programming
languages such as Haskell or ML.

Intersection types [7,8,18,25] extend the simply typed lambda-calculus [13],
adding to the language of types an intersection operator ∩ and allowing to type
terms with different types belonging to an intersection (T1∩. . .∩Tn). Intersection
types provide a form of polymorphism in which it is possible to explicitly indicate
every single instance of a type. Thus a term may have multiple types belonging
to a finite set (intersection) of type possibilities. Although the type inference
problem for intersection types is not decidable in general, it becomes decidable
for finite rank fragments of the general system [17].

Recently there has been an increasing interest in intersection types for general
purpose programming languages. Examples include TypeScript [26] and Flow [4].
These systems use intersection types to combine different types into one. This
enables its use in contexts where the classic object-oriented model does not apply.
Rank 2 intersection types [15,16] are particularly interesting for languages with
type inference: they are more powerful than parametric polymorphic types [9] for
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functional programming languages such as ML, because they type more terms,
and this extra power comes for free, since the complexity of typability is identical
in both systems. In fact, in the two systems typability is DEXPTIME-complete.

In this paper, we present a type inference algorithm for a rank 2 intersection
gradual type system which automatically deduces the type of an expression,
allowing the programmer to write code without worrying about type annotations.

If dynamic types, which are only introduced by a programmer, are allowed
as instances of intersection types, expressions may be typed with both static and
dynamic types simultaneously. For example, consider the following expression:

λx : Int ∩Dyn . x x

The occurrences of the variable x may be assigned both the Dyn and the Int type.
A possible assignment of types which well-types the expression is the following:

λx : Int ∩Dyn . xDyn xInt

Here we define a type inference algorithm which first generates a set of con-
straints on types and then solves them using an extended type unification algo-
rithm. The first phase of type inference is to assign initial types to expressions
and then generate constraints between these types. For example, consider the
expression referred previously:

λx : Int ∩Dyn . x x

Let ≲̇ denote a consistent subtyping [12] constraint between two types, which
means that the two types might satisfy the consistent subtyping relation. The
constraint generation algorithm generates the following initial typings and cor-
responding constraints for the expression (several typings are generated due to
different choices of where to assign types to variables):

λx : Int ∩Dyn . xDyn xInt : (Int ∩Dyn) → Dyn

{Int ≲̇ Dyn}

λx : Int ∩Dyn . xDyn xDyn : Dyn → Dyn

{Dyn ≲̇ Dyn}

The ≲̇ constraint guarantees that, when applying a function, the type of the
argument is a consistent subtype of the domain type of the function. The con-
straint solving algorithm solves the constraints and produces a substitution of
types for type variables, which when applied to the initial type assigned to the
expression returns a final type for the expression. For the previous example, we
will end up with the following well-typed expression as result:

λx : Int ∩Dyn . x x : (Int ∩Dyn → Dyn) ∩ (Dyn → Dyn)

Thus, this paper makes the following main contributions:



Type Inference for Rank 2 Gradual Intersection Types 3

1. A type inference algorithm: following [11], our approach first generates type
constraints and then solves these constraints using a new unification algo-
rithm for gradual intersection types of rank 2.

2. Theorems of soundness and completeness of the type inference algorithm,
which show that the types returned by the algorithm are derivable in the type
system and that, given an expression, the algorithm produces a syntactic
description of all the types which type the expression using the type system.

3. The existence of principal typings, typings which represent all other typings
for the same expression, for rank 2 gradual intersection types.

Related Work In [2], intersections were used to type overloaded functions
which can discriminate on the type of the argument and execute different code
for different types. Functions typed with intersections run different pieces of
code accordingly to the type of their arguments. These systems extended se-
mantic subtyping [10] with gradual types, and types are interpreted as sets of
values. Another view of intersection types originated in the Turin group of in-
tersection type systems [7, 8], and was also used in the programming language
Forsythe [21,22]. Intersection types are used as finitely parametric polymorphic
types where functions with intersection types have a uniform behaviour: when
applied to arguments of different types, they always execute the same code for
all of these types. Here we follow this second approach. In previous work, we
integrated gradual types with intersection types on a gradual intersection type
system [29], which considered intersection types without a finite rank restriction,
thus the type inference problem was not decidable. In this paper, by restricting
intersection types to rank 2, we can define a type inference algorithm.

Type inference for a system with intersection and gradual types was presented
before in [3]. In this contribution, constraint solving reused existing solving al-
gorithms such as unification and tallying and, in the type inference algorithm,
intersections were coded in a type language with union types, an empty type
and negation types. In [3], type inference is sound but not complete, and it is
semi-decidable for set-theoretical gradual types. Here we present a sound and
complete type inference algorithm, where decidability is achieved by restricting
the type system to types of a finite rank.

Type inference for gradual type systems is the topic of other previous works
described in [24] and [11]. These systems inferred gradual types for a given
expression and were also based on extended type unification algorithms which
deal with type equality in the presence of dynamic types. Both systems deal
with gradual types, but not intersection types. For intersection type systems,
type inference [15–18] was previously defined for finite-rank intersection types,
using a generalization of the unification algorithm dealing with the complicated
operation of type expansion. These systems deal with intersection types but not
gradual types.
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2 Rank 2 Gradual Intersection Types

We consider a type language where intersection types are limited to rank 2,
following a definition of rank 2 inspired in [16,19]. Thus, we define rank 2 gradual
intersection types here:

T 0 ::= X | B | Dyn | T 0 → T 0

T 1 ::= T 0 | T 0 ∩ . . . ∩ T 0

T 2 ::= T 0 | T 1 → T 2

X represents a type variable, B is the set of base types, such as Int and Bool , T 0

is the set of simple types, containing type variables, base types and the dynamic
type and also arrow types. T 1 is the set of rank 1 types, which contain finite and
non-empty intersections of simple types. Finally, T 2 represents the set of rank
2 types, which may contain intersections, but only to the left of a single arrow.
We refer to the set of possible types under our system, T 1 ∪ T 2, simply as T .
The following types are considered rank 2 gradual intersection types:

(T1 → T1 ∩ T2 → T2) → (T1 ∩ T2) → T

((T1 → T2) ∩ T1) → T2

However, these do not belong to the set of rank 2 gradual intersection types:

((T1 → T1) ∩ (T2 → T2)) → (T1 ∩ T2) → (T1 ∩ T2)

((T1 ∩ T2) → T1) → T2

Therefore, intersection types are not allowed in the codomain of an arrow
type, agreeing with the original definition in [7]. Intersections are commutative
(e.g. T1 ∩ T2 = T2 ∩ T1), idempotent (e.g. T1 ∩ T1 = T1) and associative (e.g.
(T1 ∩ T2) ∩ T3 = T1 ∩ (T2 ∩ T3). There is no distinction between a singleton
intersection of types and its sole element, so for any type T , T can be considered
an intersection of types of size 1. The intersection type connective ∩ has higher
precedence (binds tighter) than the arrow type. Also, we can abbreviate an
intersection type with the following definition:

T1 ∩ . . . ∩ Tn =
⋂n

i=1 Ti

These two representations are used interchangeably.
In presenting the syntax of our language we will follow the convention that c

ranges over constants such as integers and truth values, x ranges over variables,
e ranges over expressions and T ranges over types. The language of expressions
in our system is given by the following grammar:

Expressions e ::= x | λx : T 1 . e | λx . e | e e | c

Note that there are two lambda abstraction expressions, one for typed code,
allowing the insertion of type annotations, and another one for untyped code,
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which does not require type annotations. We impose one restriction on type
annotations in lambda abstractions, besides being rank 1 types, they may not
contain type variables X. As we are presenting a type inference algorithm, type
annotations are not required since types will be inferred automatically by the
algorithm. We also fix a set of term constants for the base types. For example, we
might assume a base type Int , and the term constants are the natural numbers.
In the type system, term constants have the appropriate base types. Note that
if the language is only implicitly typed (without type annotations) the inferred
types are static. Dynamic types are introduced only by type annotations. This
design option goes back to previous work regarding type inference for gradual
typing [11] where also "there can be no dynamism without annotation”.

A typing context is a finite set, represented by {x1 : T 1
1 , . . . , xn : T 1

n}, of
(type variable, T 1 type) pairs called bindings. We use Γ to range over typing
contexts. We write Γ (x) for the type bounded by the variable x in the typing
context Γ and define Γ (x) as: Γ (x) = T , if x : T ∈ Γ . We write dom(Γ ) for
the set {x | x : T ∈ Γ}, for all T , and cod(Γ ) for the set {T | x : T ∈ Γ}, for
all x. We write Γx for the typing context Γ with any binding for the variable x
removed. We define Γx as: Γx = Γ/{x : T}, for any type T .

An annotation context is a finite set, represented by {x1 : T 1
1 , . . . , xn : T 1

n}, of
(type variable, T 1 type) pairs called bindings. We use A to range over annotation
contexts. We write A(x) for the type paired with the variable x in the annotation
context A, defined as: A(x) = T if x : T ∈ A. We write dom(A) for the set
{x | x : T ∈ A}, for all T . We write cod(A) for the set {T | x : T ∈ A}, for all
x. We write Ax for the annotation context A with any pair for the variable x
removed. We define Ax as: Ax = A/{x : T}, for any type T .

3 Type System

In this section, we present the rank 2 gradual intersection type system (GITS),
in Figure 1. The GITS system type checks an explicitly typed lambda-calculus
language with integers and booleans. This type system is composed of type rules
that originate from both gradual typing [5] and intersection types, particularly
from [7]. As with gradual typing, to declare terms as either dynamically typed or
statically typed, we simply add an explicit domain-type declaration in lambda
abstractions.

The cornerstone of gradual typing is the ∼ (consistency) relation on types.
We say that two types are consistent if the parts where both types are defined
(static) are equal. If the expected type of an expression is an arrow type, in the
T-App rule for example, but that expression is typed with the Dyn type, then
the system assumes that the type of the expression is an arrow type. Therefore,
pattern matching (▷) is a feature of gradual typing that enables the Dyn type to
be treated as a function type from Dyn to Dyn (Dyn → Dyn), or if the type is
already an arrow type, it gets its domain and codomain. Rule T-Abs: generalizes
a similar rule for abstractions for the Forsythe programming language [22]. In
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Syntax

Types T, PM ::= B | Dyn | T → T | T ∩ . . . ∩ T

Expressions e ::= x | λx . e | λx : T 1 . e | e e | c

Γ ⊢∩G e : T Typing

x : T1 ∩ . . . ∩ Tn ∈ Γ

Γ ⊢∩G x : Ti

T-Var
Γ, x : T1 ⊢∩G e : T2 static(T1)

Γ ⊢∩G λx . e : T1 → T2

T-Abs

Γ, x : T1 ∩ . . . ∩ Tm ⊢∩G e : T m ≤ n

Γ ⊢∩G λx : T1 ∩ . . . ∩ Tn . e : T1 ∩ . . . ∩ Tm → T
T-Abs:

Γ ⊢∩G e1 : PM PM ▷ T1 ∩ . . . ∩ Tn → T
Γ ⊢∩G e2 : T ′

1 ∩ . . . ∩ T ′
n T ′

1 ≲ T1 . . . T
′
n ≲ Tn

Γ ⊢∩G e1 e2 : T
T-App

Γ ⊢∩G e : T1 · · · Γ ⊢∩G e : Tn

Γ ⊢∩G e : T1 ∩ . . . ∩ Tn

T-Gen
Γ ⊢∩G e : T1 ∩ . . . ∩ Tn

Γ ⊢∩G e : Ti

T-Inst

c is a constant of type T

Γ ⊢∩G c : T
T-Const

T ▷ T Pattern Matching

T1 → T2 ▷ T1 → T2 Dyn ▷Dyn → Dyn

Fig. 1. Gradual Intersection Type System (⊢∩G)

this rule, the type of the formal parameter must be a subset of the set of types
declared explicitly in the abstraction (as an intersection type).

We now define the subtyping (≤) relation, which in this system is just a
simplified version of the subtyping (or type inclusion) relation from [1]. Albeit
having no use in the type system, we include subtyping in this paper because it
is necessary for soundness and completeness properties. The subtyping relation
is inductively defined using the following rules (bear in mind that subtyping is
transitive):

Definition 1 (Subtyping).

1. T ≤ T

2. T1 ∩ . . . ∩ Tn ≤ T1 ∩ . . . ∩ Tm with m ≤ n

3. T1 → T2 ≤ T3 → T4 ⇐⇒ T3 ≤ T1 ∧ T2 ≤ T4

4. T ≤ T1 ∩ . . . ∩ Tn ⇐⇒ T ≤ T1 and . . . and T ≤ Tn

5. (T → T1) ∩ . . . ∩ (T → Tn) ≤ T → T1 ∩ . . . ∩ Tn
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At first glance, gradual typing and intersection types seem rather incompatible
for two reasons: types in these two systems are compared using different relations,
∼ for gradual types and ≤ for intersection types; and also type inference rules
for gradual typing know what type to assign a variable since only one type is
annotated in abstractions while type inference rules for intersection types don’t
know which instance will be used for a particular occurrence of a term variable,
hence assigning a type variable instead. Approaching the first incompatibility,
an obvious solution would be to combine these two key relations so that they can
be used in the same system while maintaining their purposes. Keeping in mind
that the ≤ relation is not commutative, the following definition captures the
essence of both relations. The consistent subtyping [12] relation is inductively
defined using the following rules:

Definition 2 (Consistent Subtyping).

1. Dyn ≲ T

2. T ≲ Dyn

3. T ≲ T

4. T1 ∩ . . . ∩ Tn ≲ T1 ∩ . . . ∩ Tm with m ≤ n

5. T1 → T2 ≲ T3 → T4 ⇐⇒ T3 ≲ T1 ∧ T2 ≲ T4

6. T ≲ T1 ∩ . . . ∩ Tn ⇐⇒ T ≲ T1 ∧ . . . ∧ T ≲ Tn

7. (T → T1) ∩ . . . ∩ (T → Tn) ≲ T → T1 ∩ . . . ∩ Tn

In a sense, ≲ represents the ≤ relation from intersection types but extended to
take into account the consistency of all types with the Dyn type, hence rules
1 and 2. Also, bear in mind that consistent subtyping is not transitive. The
following cases hold under ≲:

Int → Int ≲ Int → Int ∩Dyn

Int → Dyn ≲ Dyn → Dyn

Now that we have overcome this first obstacle, we now define substitutions, our
constraints and how they relate with substitutions.

Substitutions are the standard substitution on types but extended to deal
with the Dyn type and intersection types. Let [X 7→ T 0] be a type substitution
of X to T 0, meaning that when applied to a type T ′ ([X 7→ T 0]T ′), every
occurrence of X in T ′ is replaced with T 0. We restrict T 0 to be a simple type,
therefore, substitution cannot introduce intersection types, but only substitute
type variables with simple types. A substitution applied to an intersection type
is the same as applying the same substitution to each instance of the intersection
type. The composition of substitutions is written as S1 ◦ S2 and it is the same
as applying the substitutions S2 and then S1, similar to the standard function
composition. We sometimes write the composition of substitutions as [X1 7→
T1, . . . , Xn 7→ Tn], which is equivalent to writing [X1 7→ T1] ◦ . . . ◦ [Xn 7→ Tn].
We lift substitutions to apply to expressions, by leaving the expression unchanged
and substituting type annotations.
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Constraints are defined by the following grammar:

Constraints C ::= T ≲̇ T | T .
= T | C ∪ C

We define two types of constraints: the ≲̇ constraint states that two types should
satisfy the consistent subtyping [12] relation and the .

= constraint is the standard
equality constraint. A substitution S models a constraint C (S |= C) between
two types, T1 and T2, if the relation associated with that constraint holds for
S(T1) and S(T2).

Definition 3 (Constraint Satisfaction).

1. S |= ∅
2. S |= T1 ≲̇ T2 ⇐⇒ S(T1) ≲ S(T2)

3. S |= T1
.
= T2 ⇐⇒ S(T1) = S(T2)

4. S |= C1 ∪ C2 ⇐⇒ S |= C1 and S |= C2

The type inference algorithm will be defined bottom-up regarding the assign-
ment of types, thus different occurrences of the same term variable may be typed
with different type variables. The application of expressions containing different
bindings for the same variable must join the bindings in the same typing con-
text. The following operation combines typing contexts resulting from different
derivations of the type inference algorithm. For two typing contexts Γ1 and Γ2,
we define Γ1 + Γ2 as follows:

Definition 4 (Γ1 + Γ2). For each x ∈ dom(Γ1) ∪ dom(Γ2),

(Γ1 + Γ2)(x) =


Γ1(x), if x ̸∈ dom(Γ2)

Γ2(x), if x ̸∈ dom(Γ1)

Γ1(x) ∩ Γ2(x), otherwise

Combining typing contexts is essentially gathering the types bound to a certain
variable, in multiple typing contexts, in an intersection type, for each variable
in each typing context. We can abbreviate the sum of various typing contexts as
following, and these two representations are used interchangeably:

Γ1 + . . .+ Γn =
∑n

i=1 Γi

4 Type Inference

Adapting ideas from the type inference algorithms for gradual typing [11] and
intersection types [15], we adopt the common scheme for type inference, intro-
duced by [27], which is to generate constraints for typeability and solve them
through a constraint unification phase.
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A | Γ ⊢∩G e : T | C Constraint Generation

A(x) = T1 ∩ . . . ∩ Tn i ∈ 1..n if x ∈ dom(A)

A | {x : Ti} ⊢∩G x : Ti | {}
C-Var1

X is a fresh type variable if x ̸∈ dom(A)

A | {x : X} ⊢∩G x : X | {}
C-Var2

c is a constant of type T

A | {} ⊢∩G c : T | {}
C-Const

A | Γ ⊢∩G e : T | C if x ∈ dom(Γ )

A | Γx ⊢∩G λx . e : Γ (x) → T | C
C-Abs1

A | Γ ⊢∩G e : T | C if x ̸∈ dom(Γ ) X is a fresh type variable
A | Γ ⊢∩G λx . e : X → T | C

C-Abs2

Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ ⊢∩G e : T | C if x ∈ dom(Γ )

A | Γx ⊢∩G λx : T1 ∩ . . . ∩ Tn . e : Γ (x) → T | C
C-Abs:1

Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ ⊢∩G e : T | C if x ̸∈ dom(Γ )

A | Γ ⊢∩G λx : T1 ∩ . . . ∩ Tn . e : (T1 → T ) ∩ . . . ∩ (Tn → T ) | C
C-Abs:2

A | Γ1 ⊢∩G e1 : T1 | C1 A | Γ2 ⊢∩G e2 : T2 | C2

cod(T1)
.
= T3 | C3 T2 ≲̇ dom(T1) | C4 T1 is simple type
A | Γ1 + Γ2 ⊢∩G e1 e2 : T3 | C1 ∪ C2 ∪ C3 ∪ C4

C-App

A | Γ ⊢∩G e1 : T1 ∩ . . . ∩ Tn → T | C
A | Γ1 ⊢∩G e2 : T ′

1 | C1 . . . A | Γn ⊢∩G e2 : T ′
n | Cn

A | Γ + Γ1 + . . .+ Γn ⊢∩G e1 e2 : T | C ∪ C1 ∪ {T ′
1 ≲̇ T1} ∪ . . . ∪ Cn ∪ {T ′

n ≲̇ Tn}
C-App∩

Fig. 2. Constraint Generation

4.1 Constraint Generation

Given an annotation context A (whose elements are provided by user-supplied
annotations in lambda-abstractions) and an expression e, the constraint gener-
ation algorithm A | Γ ⊢∩G e : T | C (in Figure 2, see auxiliary definitions in
Figures 3 and 4) returns a set of tuples containing a typing context Γ , a type T
and a set of constraints C.

The constraint generation algorithm follows bottom-up traversing the syntac-
tic tree of the expression. So, when assigning types to expressions, the algorithm
will first assign types to the leaves of the syntactic tree of the expression, and
then work its way up. This is useful for intersection types because we can assign
different type variables to different instances of the same variable. This allows
generating different typings for the same variable, which can be joined in the
same intersection type. An issue we overcome arises from having the assignment
of types working as bottom-up while also forcing certain variables to be typed
with certain types, using annotations in lambda abstractions. The algorithm
cannot decide which instance of the type bound by a variable in the typing
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cod(T1)
.
= T2 | C

X1, X2 are fresh
cod(X)

.
= X2 | {X .

= X1 → X2} cod(T1 → T2)
.
= T2 | {}

cod(Dyn)
.
= Dyn | {}

Fig. 3. Constraint Codomain Judgment

T2 ≲̇ dom(T1) | C

X1, X2 are fresh

T2 ≲̇ dom(X) | {X .
= X1 → X2, T2 ≲̇ X1} T2 ≲̇ dom(T11 → T12) | {T2 ≲̇ T11}

T2 ≲̇ dom(Dyn) | {T2 ≲̇ Dyn}

Fig. 4. Constraint Domain judgment

context by lambda abstractions, will be assigned to a certain occurrence of that
variable, before checking the context in which that variable is located. Therefore,
the types of variables must be chosen before knowing how the variable’s type is
constrained by its use in the program.

For example, consider the following expression:

λf . λx : Int ∩Dyn . f (x x)

The algorithm cannot decide if it should assign type Int or Dyn to the first
occurrence of variable x. According to the context, it is clear that the first
occurrence should have an arrow type, which can be converted from the Dyn
type. However, when typing x the algorithm hasn’t accessed this information
yet. Since in the gradual type inference defined in [11] we know what type to
assign to a variable before reaching that variable, the adaptation of gradual
type inference to support intersection types is not trivial. To solve this difficulty,
the type inference algorithm produces various typings, each corresponding to a
choice of what type to assign to that particular variable.

According to rule C-Var1, we choose an instance of the type bound by x
in the annotation context A. This leads to the generation of various typings
(a more complete explanation is provided in subsection 4.4). For the choices
which originate an ill-typed expression, the algorithm fails, returning only the
choices leading to a well-typed expression. This way we avoid committing to
a single choice, which could cause a typeable expression to be rejected by the
type inference. Regarding the variables x, in the previous example, the following
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typings are produced:

{x : Int ∩Dyn} | {x : Int} ⊢∩G x : Int | {}
{x : Int ∩Dyn} | {x : Int} ⊢∩G x : Int | {}

{x : Int ∩Dyn} | {x : Int} ⊢∩G x : Int | {}
{x : Int ∩Dyn} | {x : Dyn} ⊢∩G x : Dyn | {}

{x : Int ∩Dyn} | {x : Dyn} ⊢∩G x : Dyn | {}
{x : Int ∩Dyn} | {x : Int} ⊢∩G x : Int | {}

{x : Int ∩Dyn} | {x : Dyn} ⊢∩G x : Dyn | {}
{x : Int ∩Dyn} | {x : Dyn} ⊢∩G x : Dyn | {}

Then, by rule C-App, the algorithm checks if the type of the expression in the
left-hand side is an arrow type or can be converted to one. In the first two
typings, this is not true. Therefore the algorithm fails for those alternatives and
proceeds for the last two alternatives.

Regarding the rules for application, the expression on the left-hand side can
be typed with a type whose domain is an intersection type or a simple type.
Therefore, we require two rules to discriminate between these two cases. When
the domain type of the expression is a simple type, the rule for application,
C-App, is the standard one from [11] with a few minor changes. Constraint
Codomain Judgment (Figure 3) and the Constraint Domain Judgment (Figure
4) are adapted to deal with the ≲ relation instead of the ∼ relation, and thus
rule C-App ensures that the type of the expression on the left-hand side of an
application is an arrow type and that the domain of this arrow type is a supertype
(i.e. it includes it using the subtype relation) of the type of the argument (the
expression on the right-hand side of the application).

When the type of the expression on the left-hand side is an intersection
type, the rule C-App∩ requires the generation of different typings, one for each
instance of the intersection type in the domain of the expression. Then it checks
if the different types for the argument are consistent with the instances of the
intersection type in the domain. This rule is inspired by an analogous rule in [15].

Both constraint generation rules will then join together the typing contexts
of the two subexpressions, or in the case of rule C-App∩, the typing contexts of
the different typings, by combining the types bound to the same variables as an
intersection type, according to Definition 4.

The next lemmas show that the constraint generation algorithm is both sound
and complete, w.r.t. the type system.

Lemma 1 (Constraint Soundness). If A | Γ ⊢∩G e : T | C and S |= C then
S(Γ ) ⊢∩G S(e) : S(T ).

Proof. By induction on the length of the derivation tree of A | Γ ⊢∩G e : T | C.
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Lemma 2 (Constraint Completeness). If Γ1 ⊢∩G e : T1 then

1. there exists a derivation A | Γ2 ⊢∩G e : T2 | C such that ∃S . S |= C
2. for A | Γ21 ⊢∩G e : T21 | C1 such that ∃S1 . S1 |= C1 and . . . and A | Γ2n ⊢∩G

e : T2n | Cn such that ∃Sn . Sn |= Cn then
(a) for each x ∈ dom(Γ1) ∩ dom(

∑n
i=1 Γ2i), Γ1(x) ≤ Si(Γ2i(x)), ∀i ∈ 1..n

(b)
⋂n

i=1 Si(T2i) ≤ T1

Proof. By induction on the length of the derivation tree of Γ1 ⊢∩G e : T1.

4.2 Constraint Solving

Given a set of constraints C, obtained by constraint generation, we shall define,
in Figure 5, a solving relation between a set of constraints C and a substitution
S (C ⇒ S) meaning: solving the set of constraints C results in S. Rules in Figure
5 are syntax-directed and define a decision algorithm by successively applying
these rules using a bottom-up proof search strategy.

Our constraint solving algorithm extends Robinson unification [23] to deal
with new equality definitions which account for dynamic types and intersection
types. Most of these rules are adapted from [5] and [15], with a few exceptions.
Since there are two types of constraints, there are two groups of constraint
solving rules, and also a base case to halt the algorithm (rule Em). The constraint
solving algorithm first transforms any ≲̇ constraint into an equivalent standard
unification problem involving only equality constraints. Thus, there is an order
of application of rules in the constraint solver defined in Figure 5. First, rules
CS transform ≲̇ constraints into a set of equations. Then, rules Eq, solve the
resulting set of equations yielding a substitution as the solution for the initial
set of constraints.

Given that ≲̇ constraints are a new concept, a brief walkthrough of the rules
will clarify their meaning. Most rules that deal with ≲̇ are a direct adaptation of
[15] and relate to subtyping (definition 1). Only rules CS-DynL and CS-DynR
stand out, since they are used to simulate ∼ from [11]. The remaining rules, which
regard .

= constraints, come from [11]. When we have a ≲̇ constraint between
different type variables or base types, we constrain those types to be equal, since
they cannot be solved further. The remaining rules, for the .

= constraint, are
based on standard unification rules for equality.

Going back to the example above, the two alternatives that haven’t failed,
produce the following typings and constraints:

λf . λx : Int ∩Dyn . f (x x) : X1 → (Int ∩Dyn) → X3

{Int ≲̇ Dyn, X1
.
= X2 → X3, X1

.
= X4 → X5,Dyn ≲̇ X4}

λf . λx : Int ∩Dyn . f (x x) : X1 → Dyn → X3

{Dyn ≲̇ Dyn, X1
.
= X2 → X3, X1

.
= X4 → X5,Dyn ≲̇ X4}
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C ⇒ S Constraint Solving

∅ ⇒ ∅
Em

C ⇒ S

{Dyn ≲̇ T} ∪ C ⇒ S
CS-DynL

C ⇒ S

{T ≲̇ Dyn} ∪ C ⇒ S
CS-DynR

C ⇒ S T ∈ {Int ,Bool} ∪ TV ar

{T ≲̇ T} ∪ C ⇒ S
CS-Refl

C ⇒ S m ≤ n

{T1 ∩ . . . ∩ Tn ≲̇ T1 ∩ . . . ∩ Tm} ∪ C ⇒ S
CS-Inst

C ⇒ S

{(T → T1) ∩ . . . ∩ (T → Tn) ≲̇ T → T1 ∩ . . . ∩ Tn} ∪ C ⇒ S
CS-Assoc

{T3 ≲̇ T1, T2 ≲̇ T4} ∪ C ⇒ S

{T1 → T2 ≲̇ T3 → T4} ∪ C ⇒ S
CS-Arrow

{T ≲̇ T1, . . . , T ≲̇ Tn} ∪ C ⇒ S

{T ≲̇ T1 ∩ . . . ∩ Tn} ∪ C ⇒ S
CS-InstR

{X1 ≲̇ T1, T2 ≲̇ X2, T
.
= X1 → X2} ∪ C ⇒ S

X1, X2 are fresh type variables

{T1 → T2 ≲̇ T} ∪ C ⇒ S
CS-ArrowL

{T1 ≲̇ X1, X2 ≲̇ T2, T
.
= X1 → X2} ∪ C ⇒ S

X1, X2 are fresh type variables

{T ≲̇ T1 → T2} ∪ C ⇒ S
CS-ArrowR

{T1
.
= T2} ∪ C ⇒ S T1, T2 ∈ {Int ,Bool} ∪ TV ar

{T1 ≲̇ T2} ∪ C ⇒ S
CS-Eq

C ⇒ S T ∈ {Int ,Bool} ∪ TV ar

{T .
= T} ∪ C ⇒ S

Eq-Refl
{T1

.
= T3, T2

.
= T4} ∪ C ⇒ S

{T1 → T2
.
= T3 → T4} ∪ C ⇒ S

Eq-Arrow

{X .
= T} ∪ C ⇒ S T ̸∈ TV ar

{T .
= X} ∪ C ⇒ S

Eq-VarR
[X 7→ T ]C ⇒ S X ̸∈ V ars(T )

{X .
= T} ∪ C ⇒ S ◦ [X 7→ T ]

Eq-VarL

Fig. 5. Constraint Solving

Since the step by step solving of the constraints produced for each typing are
equal, only one solving will be shown. Applying the first step (rule CS-DynR)
leads both constraint sets to:

{X1
.
= X2 → X3, X1

.
= X4 → X5,Dyn ≲̇ X4}

By rule Eq-VarL, the constraint set is reduced to

{X2 → X3
.
= X4 → X5,Dyn ≲̇ X4}

and the first substitution is produced: [X1 7→ X2 → X3]. Then, by rule Eq-
Arrow, the constraint set is further reduced to

{X2
.
= X4, X3

.
= X5,Dyn ≲̇ X4}

Applying rule Eq-VarL two times reduces the constraint set to just one con-
straint

{Dyn ≲̇ X4}
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and updates the substitutions to [X3 7→ X5, X2 7→ X4, X1 7→ X2 → X3]. Finally,
solving the remaining constraint gives as final the substitutions:

[X3 7→ X5, X2 7→ X4, X1 7→ X2 → X3]

The final typings of the expressions are then:

λf . λx : Int ∩Dyn . f (x x) : (X4 → X5) → (Int ∩Dyn → X5)

λf . λx : Int ∩Dyn . f (x x) : (X4 → X5) → (Dyn → X5)

This extended unification algorithm used for constraint solving is both sound and
complete, with respect to constraint satisfaction (definition 3). Note that com-
pleteness means that the extended unification algorithm produces most general
unifiers.

Lemma 3 (Unification Soundness). If C ⇒ S then S |= C.

Proof. By induction on the length of the derivation tree of C ⇒ S.

Lemma 4 (Unification Completeness). If S1 |= C then C ⇒ S2 for some
S2, and furthermore S1 = S ◦ S2 for some S.

Proof. We proceed by induction on the breakdown of constraint sets by the
unification rules.

4.3 Gradual Types

Any type is a consistent subtype, or consistent supertype, of the Dyn type, thus
there is no need for further checks, such as recursively checking consistent sub-
typing through the structure of the type. Constraints which require a type to be
consistent subtype, or supertype, with the Dyn type have been discarded up until
now using our definition of constraint solving since they are satisfiable with any
substitution. Discarding these constraints brings a problem regarding the instan-
tiation of type variables. A type variable that is only constrained to be consistent
with the Dyn type will not be substituted since no substitution concerning that
variable will be produced. However, as that type variable is only constrained by
the Dyn type, it should be instantiated to the Dyn type, so a substitution from
that variable to the Dyn type should be produced. Implementing this only takes
a simple extension [11] to our constraint solving algorithm. Therefore, given a
set of constraints C, the constraint solving algorithm G | C ⇒ S will produce a
set of substitutions S and a set of gradual types G. The extension is shown in
Figure 6.

To instantiate these unconstrained type variables to Dyn, we first need to col-
lect them. When any constraint of the form T ≲̇ Dyn or Dyn ≲̇ T is encountered
by the solver, we store the type T , per rules CS-DynL and CS-DynR. Note that
these types might be constrained by other constraints, however, we collect them
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G | C ⇒ S Constraint Unification

G | ∅ ⇒ [V ars(G) 7→ Dyn]
Em

G ∪ {T} | C ⇒ S

G | {Dyn ≲̇ T} ∪ C ⇒ S
CS-DynL

G ∪ {T} | C ⇒ S

G | {T ≲̇ Dyn} ∪ C ⇒ S
CS-DynR

[X 7→ T ]G | [X 7→ T ]C ⇒ S X ̸∈ V ars(T )

G | {X .
= T} ∪ C ⇒ S ◦ [X 7→ T ]

Eq-VarL

Fig. 6. Constraint Solving with Gradual Types

nonetheless. These will be considered gradual types since they potentially con-
tain the Dyn type. When a constraint is solved and a substitution is produced,
the constraint solver applies the substitution to the remaining constraints to
avoid unconstrained type variables. This behaviour must also be implemented,
regarding the gradual types stored. In rule Eq-VarL, when a substitution is
produced, it is applied to the remaining constraints and also to the collection of
gradual types. Finally, when all constraints have been solved and all the substi-
tutions have been produced, we will get the complete collection of gradual types.
These will possibly contain base types, such as Int , compound types such as the
arrow type and type variables. Then, we take the type variables from these types
and produce substitutions from those type variables to Dyn. This is done by rule
Em. V ars(G) is the set of all the type variables present in all the types in G.
The overline means that a substitution will be produced for each type variable
obtained by V ars(G).

Since the constraint unification algorithm has been updated, we need to
update the soundness and completeness lemmas to match the new algorithm’s
specification.

Lemma 5 (Unification Soundness). If G | C ⇒ S then S |= C.

Proof. Extends proof of Lemma 3. By induction on the length of the derivation
tree of G | C ⇒ S.

Lemma 6 (Unification Completeness). If S1 ◦ [V ars(G) 7→ Dyn] |= C then
G | C ⇒ S2 for some S2, and furthermore S1 ◦ [V ars(G) 7→ Dyn] = S ◦ S2 for
some S.

Proof. Extends proof of Lemma 4. By induction on the breakdown of constraint
sets by the unification rules.
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Continuing the example above, with the extended constraint solving algo-
rithm, a final substitution is added:

[X4 7→ Dyn, X3 7→ X5, X2 7→ X4, X1 7→ X2 → X3]

The final typings of the expressions are then:

λf . λx : Int ∩Dyn . f (x x) : (Dyn → X5) → (Int ∩Dyn → X5)

λf . λx : Int ∩Dyn . f (x x) : (Dyn → X5) → (Dyn → X5)

Notice that only in the first solution all the instances of the type in the annotation
of the lambda abstraction are used.

4.4 Multiple Solutions

In the language described in Section 2, variables may be annotated with intersec-
tion types in lambda abstractions. In these cases, the type inference algorithm
assigns a particular instance of that intersection type to a particular occurrence
of that variable. However, given the fact that we are dealing with idempotent
intersection types, we cannot know in advance which instance to assign to a
particular occurrence of a variable since some choices lead to ill-typed expres-
sions while other choices lead to well-typed expressions. For example, consider
the following expression,

λx : Int ∩Dyn . x x x

We must choose, for each of the three occurrences of x, either the Int or the Dyn
type. Some choices lead to the expression becoming ill-typed, such as:

λx : Int ∩Dyn . xInt xDyn xInt

Other choices lead the expression to become well-typed, such as:

λx : Int ∩Dyn . xDyn xDyn xInt

λx : Int ∩Dyn . xDyn xInt xInt

Therefore, our type inference algorithm first produces several typings for an
expression. Since there are many different choices to type variables, we generate
different typings according to each choice. The generation of multiple typings is
clear in rule C-Var1, which generates a typing for a variable for each instance of
intersection type bound to that variable in the annotation context.

Constraint generation produces several sets of constraints and each set of
constraints is solved by the constraint solving algorithm leading to multiple
incomparable solutions. We will show that the type inference algorithm is sound
and complete and that the set of substitutions computed by the algorithm is
principal in the sense that any other solution is an instance of one in the set
returned by the solver when it is applied to the different constraint sets produced
in the constraint generation phase.
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The expression λx : Int ∩ Dyn . x x x has a total of 8 typings, which cor-
respond to choosing different combinations of Int and Dyn for the three occur-
rences of the variable x. We can see that of those choices, only 4 will produce
a typeable expression. Choosing Int for the first occurrence of x leads to an
ill-typed expression. Therefore, we end up with 4 different typings:

λx : Int ∩Dyn . xDyn xInt xInt : Int ∩Dyn → Dyn

λx : Int ∩Dyn . xDyn xDyn xInt : Int ∩Dyn → Dyn

λx : Int ∩Dyn . xDyn xInt xDyn : Int ∩Dyn → Dyn

λx : Int ∩Dyn . xDyn xDyn xDyn : Dyn → Dyn

However, note that the last typing does not use all the instances in typing vari-
ables. The type inference algorithm is then described as follows:

Definition 5 (Type Inference). Let e be an expression, Γ a context, T a type,
S a substitution and Sol a set of triples of the form (Γ, T, S). The type inference
function I from expressions to sets of triples (Γ, T, S), is defined by the following
steps:

1. Sol = ∅
2. for every derivation of ∅ | Γ ⊢∩G e : T | C that holds

(a) if ∅ | C ⇒ S holds then
Sol = Sol ∪ {(S(Γ ), S(T ), S)}

3. return Sol

Step 2 generates constraints with derivations in the constraint generation system.
Given an empty annotation context and the expression e, ∅ | Γ ⊢∩G e : T | C gets
us the typing context Γ , the type of the expression T and the set of constraints
C. In step 2.a, given an empty set of gradual types and the constraints C, if
the constraint solver algorithm ∅ | C ⇒ S produces a substitution S, then that
substitutions S is added to the solutions.

4.5 Decidability

Different typings in the constraint generation system in Figure 2 arise from
intersections, and intersections are always finite, thus the number of derivations
for a given expression is also finite. Also, since constraint generation follows the
syntactic tree of the expression, each constraint generation derivation terminates.

Lemma 7 (Termination of Constraint Generation). Given a context A
and an expression e, the number of derivations by the constraint generation
system for A | Γ ⊢∩G e : T | C is finite.

Proof. The proof follows by structural induction on e.
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Now, to prove that the successive application of constraint solving rules in Fig-
ure 5 always halt, note that, every rule, when applied to a consistent subtyping
constraint, reduces the number of type constructors in consistent subtyping con-
straints or reduces the number of consistent subtyping constraints. If the rule
applies to an equality constraint then every rule reduces the number of type con-
structors in equality constraints or reduces the number of equality constraints.
The only rule that has a different behaviour is Eq-VarR, but it will be followed
by rule Eq-VarL which reduces the number of equality constraints. Thus to
prove termination we use a metric well-ordered by a lexicographical order on the
tuples (NICS,NCCS,NCS) and (NVEq,NCEq,NTXEq,NEq), where NICS
is the number of unique intersection types in the left of an ≲̇ constraint + the
number of unique intersection types in the right of an ≲̇ constraint; NCCS is
the number of type constructors in ≲̇ constraints; NCS is the number of ≲̇ con-
straints; NVEq is the number of different type variables in .

= constraints; NCEq
is the number of type constructors in .

= constraints; NTXEq is the number of
.
= constraints of the form T

.
= X; and NEq is the number of .

= constraints. The
result is stated in the following lemma.

Lemma 8 (Termination of Constraint Solving). C ⇒ S terminates for
every set of constraints C.

Proof. By a metric well-ordered by a lexicographical order. The full proof can
be consulted in Appendix A.

Finally, decidability of the type inference algorithm follows from the two last
lemmas.

Theorem 1 (Decidability). Type inference is decidable.

Proof. By lemmas 7 and 8

4.6 Soundness and Completeness

Soundness and completeness are two important properties which show the cor-
rectness and usefulness of the type inference algorithm. Soundness guarantees
that if the type inference algorithm returns a type, then that type is derivable
in the type system. Completeness states that the output of the type inference
algorithm represents the most general type judgment able to type the expression,
a property known as principal typing. The full proofs of the following theorems
can be consulted in Appendix A.

Theorem 2 (Soundness). If (Γ, T, S) ∈ I(e) then S(Γ ) ⊢∩G S(e) : S(T ).

Proof. By lemmas 1 and 5.
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Principal Typing A type judgment, or typing, for a term, is principal if and
only if all other typings for the same expression can be derived from it by some
set of operations. Thus principal typings can be seen as the most general typings.
The notion of principal typing and its relation with the slightly different notion
of principal type was studied in detail in [16,28].

Definition 6 (Principal Typing). If Γp ⊢∩G e : Tp, then we say that (Γp, Tp)
is a principal typing of e if whenever Γ1 ⊢∩G e : T1 holds, then for some sub-
stitutions S, for each x ∈ dom(Γ1) ∩ dom(Γp), we have Γ1(x) ≤ S(Γp(x)) and
S(Tp) ≤ T1.

As the following theorem shows, our language has principal typings for every
well-typed expression.

Theorem 3 (Principal Typings). If Γ1 ⊢∩G e : T1 then there are Γ21, . . . , Γ2n,
T21, . . . , T2n, S21, . . . , S2n and S1, . . . , Sn such that ((Γ21, T21, S21), . . . , (Γ2n, T2n, S2n)) =
I(e) and, for each x ∈ dom(Γ1) ∩ dom(Γ21 + . . . + Γ2n), we have Γ1(x) ≤
S1 ◦ S21(Γ21(x)) and . . . and Γ1(x) ≤ Sn ◦ S2n(Γ2n(x)) and S1 ◦ S21(T21) ∩
. . . ∩ Sn ◦ S2n(T2n) ≤ T1.

Proof. By lemmas 2 and 6.

Principal typings are clearly a quite relevant feature of our type system. They
allow compositional type inference, where type inference for a given expression
uses only the typings inferred for its subexpressions, which can be inferred inde-
pendently in any order.

5 Conclusion

Here we study the type inference problem for the rank 2 fragment of our general
system and prove that it is decidable, by defining a type inference algorithm,
sound w.r.t. the type system and complete in the sense that returns principal
typings. This strongly indicates that rank 2 intersection gradual types may be
safely and successfully applied to the design and implementation of gradually
typed programming languages able to type values which are all of many different
types.
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A Proofs

Lemma 9 (Weakening). If Γ ⊢∩G e : T then Γ +Γ ′ ⊢∩G e : T for any typing
context Γ ′.

Proof. We proceed by induction on the derivation tree of Γ ⊢∩G e : T .

Base cases:

– Rule T-Var. If Γ ⊢∩G x : Ti then x : T1∩. . .∩Tn ∈ Γ . If x : T ′
1∩. . .∩T ′

m ∈ Γ ′,
then x : T1 ∩ . . .∩Tn ∩T ′

1 ∩ . . .∩T ′
m ∈ Γ +Γ ′. Therefore, Γ +Γ ′ ⊢∩G x : Ti.

– Rule T-Const. If Γ ⊢∩G c : T and c is a constant of type T, then Γ+Γ ′ ⊢∩G

c : T .

Induction step:

– Rule T-Abs. To avoid capture we assume that α− reduction is made when-
ever needed to rename formal parameters. If Γ ⊢∩G λx . e : T1 → T2 then
Γ, x : T1 ⊢∩G e : T2. By induction hypothesis, Γ, x : T1 + Γ ′ ⊢∩G e : T2. By
rule T-Abs, Γ + Γ ′ ⊢∩G λx . e : T1 → T2.

– Rule T-Abs:. To avoid capture we assume that α−reduction is made when-
ever needed to rename formal parameters. If Γ ⊢∩G λx : T1 ∩ . . . ∩ Tn . e :
T1 ∩ . . .∩ Tm → T then Γ, x : T1 ∩ . . .∩ Tm ⊢∩G e : T . By induction hypoth-
esis, Γ, x : T1 ∩ . . . ∩ Tm + Γ ′ ⊢∩G e : T . By rule T-Abs:, Γ + Γ ′ ⊢∩G λx :
T1 ∩ . . . ∩ Tn . e : T1 ∩ . . . ∩ Tm → T .

– Rule T-App. If Γ ⊢∩G e1 e2 : T then Γ ⊢∩G e1 : PM , PM▷T1∩. . .∩Tn → T ,
Γ ⊢∩G e2 : T ′

1 ∩ . . . ∩ T ′
n and T ′

1 ≲ T1 . . . T
′
n ≲ Tn. By induction hypothesis,

Γ + Γ ′ ⊢∩G e1 : PM and Γ + Γ ′ ⊢∩G e2 : T ′
1 ∩ . . . ∩ T ′

n. By rule T-App,
Γ + Γ ′ ⊢∩G e1 e2 : T .

– Rule T-Gen. If Γ ⊢∩G e : T1 ∩ . . . ∩ Tn then Γ ⊢∩G e : T1 and . . . and
Γ ⊢∩G e : Tn. By induction hypothesis, Γ + Γ ′ ⊢∩G e : T1 and . . . and
Γ + Γ ′ ⊢∩G e : Tn. By rule T-Gen, Γ + Γ ′ ⊢∩G e : T1 ∩ . . . ∩ Tn.

– Rule T-Inst. If Γ ⊢∩G e : Ti then Γ ⊢∩G e : T1 ∩ . . . ∩ Tn. By induction
hypothesis, Γ + Γ ′ ⊢∩G e : T1 ∩ . . . ∩ Tn. By rule T-Inst, Γ + Γ ′ ⊢∩G e : Ti

Lemma 1 (Constraint Soundness). If A | Γ ⊢∩G e : T | C and S |= C then
S(Γ ) ⊢∩G S(e) : S(T ).

Proof. We proceed by induction on the length of the derivation tree of A | Γ ⊢∩G

e : T | C.

Base cases:

– Rule C-Var1. If A | {x : Ti} ⊢∩G x : Ti | {} and S |= {} then {x :
S(Ti)} ⊢∩G x : S(Ti). Since S({x : Ti}) = {x : S(Ti)} and S(x) = x, then
S({x : Ti}) ⊢∩G S(x) : S(Ti).

– Rule C-Var2. If A | {x : X} ⊢∩G x : X | {} and S |= {} then {x :
S(X)} ⊢∩G x : S(X). Since S({x : X}) = {x : S(X)} and S(x) = x, then
S({x : X}) ⊢∩G S(x) : S(X).
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– Rule C-Const. If A | {} ⊢∩G c : T | {} and S |= ∅ then c is a constant of
type T. Therefore, S({}) ⊢∩G S(c) : S(T ).

Induction step:

– Rule C-Abs1. If A | Γx ⊢∩G λx . e : Γ (x) → T | C and S |= C then
A | Γ ⊢∩G e : T | C. By the induction hypothesis, S(Γ ) ⊢∩G S(e) : S(T ).
Then, by rule T-Abs, S(Γ )x ⊢∩G λx . S(e) : S(Γ (x)) → S(T ). As S(Γx) =
S(Γ )x, S(λx . e) = λx . S(e) and S(Γ (x) → T ) = S(Γ (x)) → S(T ) then
S(Γx) ⊢∩G S(λx . e) : S(Γ (x) → T ).

– Rule C-Abs2. If A | Γ ⊢∩G λx . e : X → T | C and S |= C then A | Γ ⊢∩G

e : T | C. By the induction hypothesis, S(Γ ) ⊢∩G S(e) : S(T ). As x : S(X) is
not used to type e and thus x ̸∈ Γ then we also have S(Γ )∪{x : S(X)} ⊢∩G

S(e) : S(T ). Then by the T-Abs, S(Γ ) ⊢∩G S(λx . e) : S(X → T ).
– Rule C-Abs:1. If A | Γx ⊢∩G λx : T1∩ . . .∩Tn . e : Γ (x) → T | C and S |= C

then Ax ∪{x : T1 ∩ . . .∩Tn} | Γ ⊢∩G e : T | C. By the induction hypothesis,
S(Γ ) ⊢∩G S(e) : S(T ). Therefore, S(Γ )x ⊢∩G λx : T1 ∩ . . . ∩ Tn . S(e) :
S(Γ (x)) → S(T ). As S(Γx) = S(Γ )x, S(Γ (x) → T ) = S(Γ (x)) → S(T )
and {x : T1 ∩ . . . ∩ Tm} ∈ Γ then S(Γx) ⊢∩G λx : S(T1 ∩ . . . ∩ Tm) ∩
Tm+1 ∩ . . . ∩ Tn . S(e) : S(Γ (x) → T ). As Tm+1 ∩ . . . ∩ Tn does not occur
in e, then those those types are not affected by substitutions. Therefore,
S(Γx) ⊢∩G S(λx : T1 ∩ . . . ∩ Tn . e) : S(Γ (x) → T ).

– Rule C-Abs:2. If A | Γ ⊢∩G λx : T1∩ . . .∩Tn . e : T1 → T ∩ . . .∩Tn → T | C
and S |= C then Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ ⊢∩G e : T | C. By the
induction hypothesis, S(Γ ) ⊢∩G S(e) : S(T ). As x ̸∈ dom(Γ ) then x doesn’t
occur in e. Therefore, we also have S(Γ ) ∪ {x : S(T1)} ⊢∩G S(e) : S(T )
and . . . and S(Γ ) ∪ {x : S(Tn)} ⊢∩G S(e) : S(T ). Then, by rule T-Abs:,
S(Γ ) ⊢∩G S(λx : T1∩ . . .∩Tn . e) : S(T1 → T ) and . . . and S(Γ ) ⊢∩G S(λx :
T1 ∩ . . . ∩ Tn . e) : S(Tn → T ). By rule T-Gen, we have S(Γ ) ⊢∩G S(λx :
T1 ∩ . . . ∩ Tn . e) : S(T1 → T ∩ . . . ∩ Tn → T ).

– Rule C-App. If A | Γ1 + Γ2 ⊢∩G e1 e2 : T3 | C1 ∪ C2 ∪ C3 ∪ C4 and S |=
C1 ∪ C2 ∪ C3 ∪ C4 then A | Γ1 ⊢∩G e1 : T1 | C1 and A | Γ2 ⊢∩G e2 : T2 | C2

and cod(T1)
.
= T3 | C3 and T2 ≲̇ dom(T1) | C4. There are three possibilities:

• T1 = X. Then, T3 = X2. By the induction hypothesis, S(Γ1) ⊢∩G S(e1) :
S(X) and S(Γ2) ⊢∩G S(e2) : S(T2). As S |= {X .

= X1 → X2, X
.
= X3 →

X4, T2 ≲̇ X1}, then S(Γ1) ⊢∩G S(e1) : S(X1 → X2) and S(T2) ≲ S(X1).
Therefore, S(Γ1) ⊢∩G S(e1) : S(X1) → S(X2). Therefore, by Lemma 9,
S(Γ1 + Γ2) ⊢∩G S(e1 e2) : S(X2).

• T1 = T11 → T12. Then, T3 = T12. By the induction hypothesis, S(Γ1) ⊢∩G

S(e1) : S(T11 → T12) and S(Γ2) ⊢∩G S(e2) : S(T2). Therefore, S(Γ1) ⊢∩G

S(e1) : S(T11) → S(T12). As S |= T2 ≲̇ T11, then S(T2) ≲ S(T11). There-
fore, by Lemma 9, S(Γ1 + Γ2) ⊢∩G S(e1 e2) : S(T12).

• T1 = Dyn. Then T3 = Dyn. By the induction hypothesis, S(Γ1) ⊢∩G

S(e1) : S(Dyn) and S(Γ2) ⊢∩G S(e2) : S(T2). Therefore, S(Γ1) ⊢∩G

S(e1) : Dyn and Dyn ▷ Dyn → Dyn. As S(T2) ≲ Dyn then, by Lemma
9, S(Γ1 + Γ2) ⊢∩G S(e1 e2) : S(Dyn).
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– Rule C-App∩. If A | Γ +Γ1 + . . .+Γn ⊢∩G e1 e2 : T | C ∪C1 ∪{T ′
1 ≲̇ T1}∪

. . . ∪ Cn ∪ {T ′
n ≲̇ Tn} and S |= C ∪ C1 ∪ {T ′

1 ≲̇ T1} ∪ . . . ∪ Cn ∪ {T ′
n ≲̇ Tn}

then A | Γ ⊢∩G e1 : T1∩ . . .∩Tn → T | C and A | Γ1 ⊢∩G e2 : T ′
1 | C1 and . . .

and A | Γn ⊢∩G e2 : T ′
n | Cn and S(T ′

1) ≲ S(T1) and . . . and S(T ′
n) ≲ S(Tn).

By the induction hypothesis, S(Γ ) ⊢∩G S(e1) : S(T1 ∩ . . . ∩ Tn → T ) and
S(Γ1) ⊢∩G S(e2) : S(T ′

1) and . . . and S(Γn) ⊢∩G S(e2) : S(T ′
n). Since, by

Lemma 9, S(Γ + Γ1 + . . . + Γn) ⊢∩G S(e1) : S(T1 ∩ . . . ∩ Tn) → S(T ),
S(Γ +Γ1+ . . .+Γn) ⊢∩G S(e2) : S(T

′
1) and . . . and S(Γ +Γ1+ . . .+Γn) ⊢∩G

S(e2) : S(T
′
n), then by rule T-App, S(Γ+Γ1+. . .+Γn) ⊢∩G S(e1 e2) : S(T ).

Lemma 10 (Consistent Subtyping to Subtyping). If T1 ≲ T2 and both T1

and T2 are static, then T1 ≤ T2.

Proof. We proceed by induction on definition 2.

Base cases:

– T ≲ T . If T ≲ T then T ≤ T .
– T1∩ . . .∩Tn ≲ T1 and . . . and T1∩ . . .∩Tn ≲ Tn. If T1∩ . . .∩Tn ≲ T1 and . . .

and T1∩ . . .∩Tn ≲ Tn, then T1∩ . . .∩Tn ≤ T1 and . . . and T1∩ . . .∩Tn ≤ Tn.
– (T → T1) ∩ . . . ∩ (T → Tn) ≲ T → T1 ∩ . . . ∩ Tn. If (T → T1) ∩ . . . ∩ (T →

Tn) ≲ T → T1∩ . . .∩Tn then (T → T1)∩ . . .∩(T → Tn) ≤ T → T1∩ . . .∩Tn.

Induction step:

– T1 → T2 ≲ T3 → T4 ⇐⇒ T3 ≲ T1 ∧ T2 ≲ T4. There are two possibilities:
• We proceed first for the right direction of the implication. If T1 → T2 ≲
T3 → T4 then T3 ≲ T1 and T2 ≲ T4. By the induction hypothesis,
T3 ≤ T1 and T2 ≤ T4. Then by the Definition 1, T1 → T2 ≤ T3 → T4.

• We now proceed for the left direction of the implication. If T3 ≲ T1

and T2 ≲ T4 then T1 → T2 ≲ T3 → T4. By the induction hypothesis,
T1 → T2 ≤ T3 → T4. By Definition 1, T3 ≤ T1 and T2 ≤ T4.

– T ≲ T1 ∩ . . . ∩ Tn ⇐⇒ T ≲ T1 ∧ . . . ∧ T ≲ Tn. There are two possibilities:
• We proceed first for the right direction of the implication. If T ≲ T1 ∩
. . . ∩ Tn then T ≲ T1 and . . . and T ≲ Tn. By the induction hypothesis,
T ≤ T1 and . . . and T ≤ Tn. Therefore, by Definition 1, T ≤ T1∩ . . .∩Tn.

• We now proceed for the left direction of intersection types. If T ≲ T1

and . . . and T ≲ Tn then T ≲ T1∩ . . .∩Tn. By the induction hypothesis,
T ≤ T1 ∩ . . . ∩ Tn. By Definition 1, T ≤ T1 and . . . and T ≤ Tn.

Lemma 2 (Constraint Completeness). If Γ1 ⊢∩G e : T1 then

1. there exists a derivation A | Γ2 ⊢∩G e : T2 | C such that ∃S . S |= C
2. for A | Γ21 ⊢∩G e : T21 | C1 such that ∃S1 . S1 |= C1 and . . . and A | Γ2n ⊢∩G

e : T2n | Cn such that ∃Sn . Sn |= Cn then
(a) for each x ∈ dom(Γ1) ∩ dom(

∑n
i=1 Γ2i), Γ1(x) ≤ Si(Γ2i(x)), ∀i ∈ 1..n

(b)
⋂n

i=1 Si(T2i) ≤ T1
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Proof. We proceed by induction on the length of the derivation tree of Γ1 ⊢∩G

e : T1.

Base cases:

– Rule T-Var. If Γ1 ⊢∩G x : Ti then x : T1 ∩ . . . ∩ Tn ∈ Γ1. There are two
possibilities:
• x ∈ dom(A). If x ∈ dom(A), then x : T1 ∩ . . . ∩ Tn ∈ A, since the type
T1 ∩ . . . ∩ Tn came from the annotation of the lambda abstraction that
binds x. To prove 1., we have that A | {x : T1} ⊢∩G x : T1 | ∅ and for
a S1 = [], S1 |= ∅ and . . . and A | {x : Tn} ⊢∩G x : Tn | ∅ and for a
Sn = [], Sn |= ∅. To prove 2.a), we have that since S1(Γ21(x)) = T1 and
. . . and Sn(Γ2n(x)) = Tn and Γ1(x) = T1 ∩ . . .∩Tn then by Definition 1,
Γ1(x) ≤ S1(Γ21(x)) and . . . and Γ1(x) ≤ Sn(Γ2n(x)) and to prove 2.b),
we have that S1(T1) ∩ . . . ∩ Sn(Tn) ≤ Ti.

• x ̸∈ dom(A). To prove 1., we have that A | {x : X1} ⊢∩G x : X1 | ∅ and
for a S1 = [X1 7→ T1], S1 |= ∅ and . . . and A | {x : Xn} ⊢∩G x : Xn | ∅
and for a Sn = [Xn 7→ Tn], Sn |= ∅. To prove 2.a), since S1(Γ21(x)) = T1

and . . . and Sn(Γ2n(x)) = Tn and Γ1(x) = T1∩. . .∩Tn then by Definition
1, Γ1(x) ≤ S1(Γ21(x)) and . . . and Γ1(x) ≤ Sn(Γ2n(x)) and to prove 2.b),
we have that S1(X1) ∩ . . . ∩ Sn(Xn) ≤ Ti.

– Rule T-Const. If Γ ⊢∩G c : T , then c is an constant of type T. Therefore,
to prove 1., we have that A | {} ⊢∩G c : T | {} and S |= ∅. Since there
is no x ∈ dom(Γ1) ∩ dom({}), 2.a) is proved. To prove 2.b), we have that
S(T ) ≤ T , by Definition 1.

Induction step:

– Rule T-Abs. If Γ1 ⊢∩G λx . e : T1 → T2 then Γ1, x : T1 ⊢∩G e : T2. There
are two possibilities:
• x ∈ dom(Γ2). By the induction hypothesis on 1., exists A | Γ2 ⊢∩G e :
T ′
2 | C such that ∃S . S |= C.

By the induction hypothesis on 2., we have that for A | Γ21 ⊢∩G e :
T21 | C1 such that ∃S1 . S1 |= C1 and . . . and for A | Γ2n ⊢∩G e :
T2n | Cn such that ∃Sn . Sn |= Cn, then for each y ∈ dom(Γ1, x :
T1) ∩ dom(

∑n
i=1 Γ2i), we have (Γ1, x : T1)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..n,

and
⋂n

i=1 Si(T2i) ≤ T2.

To prove 1., we have that as A | Γ2 ⊢∩G e : T ′
2 | C such that ∃S . S |= C,

then by rule C-Abs1, exists A | Γ2x ⊢∩G λx . e : Γ2(x) → T ′
2 | C and

S |= C.

To prove 2., we have that for A | Γ21 ⊢∩G e : T21 | C1 then A | Γ21x ⊢∩G

λx . e : Γ21(x) → T21 | C1 and S1 |= C1 and . . . and for A | Γ2n ⊢∩G e :
T2n | Cn then A | Γ2nx ⊢∩G λx . e : Γ2n(x) → T2n | Cn and Sn |= Cn.
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To prove 2.a), as (Γ1, x : T1)(y) ≤ S1(Γ21(y)) and . . . and (Γ1, x :
T1)(y) ≤ Sn(Γ2n(y)) for each y ∈ dom(Γ1, x : T1) ∩ dom(Γ2) then
(Γ1)(y) ≤ S1(Γ21x(y)) and . . . and (Γ1)(y) ≤ Sn(Γ2nx(y)).

To prove 2.b), as S1(T21) ∩ . . . ∩ Sn(T2n) ≤ T2 and T1 ≤ S1(Γ21(x)) and
. . . and T1 ≤ Sn(Γ2n(x)) then by Definition 1, rule 4, T1 ≤ S1(Γ21(x)) ∩
. . . ∩ Sn(Γ2n(x)). Therefore, by Definition 1, rule 3, S1(Γ21(x)) ∩ . . . ∩
Sn(Γ2n(x)) → S1(T21) ∩ . . . ∩ Sn(T2n) ≤ T1 → T2. Therefore, by Def-
inition 1, rule 5, (S1(Γ21(x)) ∩ . . . ∩ Sn(Γ2n(x)) → S1(T21)) ∩ . . . ∩
(S1(Γ21(x)) ∩ . . . ∩ Sn(Γ2n(x)) → Sn(T2n)) ≤ T1 → T2. By Definition 1,
rule 2, S1(Γ21(x) → T21) ∩ . . . ∩ Sn(Γ2n(x) → T2n) ≤ T1 → T2.

• x ̸∈ dom(Γ2). By the induction hypothesis on 1., exists A | Γ2 ⊢∩G e :
T ′
2 | C such that ∃S . S |= C.

By the induction hypothesis on 2., we have that for A | Γ21 ⊢∩G e :
T21 | C1 such that ∃S1 . S1 |= C1 and . . . and for A | Γ2n ⊢∩G e :
T2n | Cn such that ∃Sn . Sn |= Cn then for each y ∈ dom(Γ1, x :
T1) ∩ dom(

∑n
i=1 Γ2i), we have (Γ1, x : T1)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..n

and
⋂
i = 1nSi(T2i) ≤ T2.

To prove 1., we have that as A | Γ2 ⊢∩G e : T ′
2 | C such that ∃S . S |= C

then by rule C-Abs2, exists A | Γ2 ⊢∩G λx . e : X → T ′
2 | C and S |= C.

To prove 2., we have that for A | Γ21 ⊢∩G e : T21 | C1 then A | Γ21 ⊢∩G

λx . e : X1 → T21 | C1 and S1 |= C1 and . . . and for A | Γ2n ⊢∩G e :
T2n | Cn then A | Γ2n ⊢∩G λx . e : Xn → T2n | Cn and Sn |= Cn.

Since X1 is a fresh type variable, it is not contained in C1 and . . .
and since Xn is a fresh type variable, it is not contained in Cn. Then,
we can consider S1 = S′

1 ◦ [X1 7→ T1] and . . . and we can consider
Sn = S′

n ◦ [Xn 7→ T1].

To prove 2.a), as for each y ∈ dom(Γ1, x : T1) ∩ dom(
∑n

i=1 Γ2i), we
have (Γ1, x : T1)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..n, then Γ1(y) ≤ Si(Γ2ix(y)),
∀i ∈ 1..n.

To prove 2.b), as T1 ≤ S1(X1) and . . . and T1 ≤ Sn(Xn) then by Defini-
tion 1, rule 4, T1 ≤ S1(X1)∩. . .∩Sn(Xn). As S1(T21)∩. . .∩Sn(T2n) ≤ T2,
then by Definition 1, rule 3, S1(X1) ∩ . . . ∩ Sn(Xn) → S1(T21) ∩ . . . ∩
Sn(T2n) ≤ T1 → T2. Therefore, by Definition 1, rule 5, (S1(X1) ∩ . . . ∩
Sn(Xn) → S1(T21))∩. . .∩(S1(X1)∩. . .∩Sn(Xn) → Sn(T2n)) ≤ T1 → T2.
By Definition 1, rule 2, S1(X1 → T21)∩ . . .∩ Sn(Xn → T2n) ≤ T1 → T2.

– Rule T-Abs:. If Γ1 ⊢∩G λx : T1 ∩ . . . ∩ Tn . e : T1 ∩ . . . ∩ Tm → T then
Γ1, x : T1 ∩ . . . ∩ Tm ⊢∩G e : T . There are two possibilities:
• x ∈ dom(Γ2). By the induction hypothesis on 1., exists Ax ∪ {x :
T1 ∩ . . . ∩ Tn} | Γ2 ⊢∩G e : T ′ | C such that ∃S . S |= C.
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By the induction hypothesis on 2., we have that for Ax ∪ {x : T1 ∩
. . . ∩ Tn} | Γ21 ⊢∩G e : T ′

1 | C1 such that ∃S1 . S1 |= C1 and . . . and for
Ax ∪{x : T1 ∩ . . .∩Tn} | Γ2l ⊢∩G e : T ′

l | Cl such that ∃Sl . Sl |= Cl then
for each y ∈ dom(Γ1, x : T1 ∩ . . . ∩ Tm) ∩ dom(

∑l
i=1 Γ2i), we have that

(Γ1, x : T1 ∩ . . . ∩ Tm)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..l, and
⋂l

i=1 Si(T
′
i ) ≤ T .

To prove 1., we have that as Ax∪{x : T1∩. . .∩Tn} | Γ2 ⊢∩G e : T ′ | C such
that ∃S . S |= C, then A | Γ2x ⊢∩G λx : T1∩ . . .∩Tn . e : Γ2(x) → T ′ | C
and S |= C.

To prove 2., we have that for Ax∪{x : T1∩ . . .∩Tn} | Γ21 ⊢∩G e : T ′
1 | C1

then A | Γ21x ⊢∩G λx : T1 ∩ . . . ∩ Tn . e : Γ21(x) → T ′
1 | C1 and S1 |= C1

and . . . and for Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ2l ⊢∩G e : T ′
l | Cl then

A | Γ2lx ⊢∩G λx : T1 ∩ . . . ∩ Tn . e : Γ2l(x) → T ′
l | Cl and Sl |= Cl.

To prove 2.a), as for each y ∈ dom(Γ1) ∩ dom(
∑l

i=1 Γ2i), we have
(Γ1, x : T1∩. . .∩Tm)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..l, then Γ1(y) ≤ Si(Γ2ix(y)).

To prove 2.b), we have that T1 ∩ . . . ∩ Tm ≤ S1(Γ21(x)) and . . . and
T1 ∩ . . . ∩ Tm ≤ Sl(Γ2l(x)). As T1 ∩ . . . ∩ Tm ≤ S1(Γ21(x)) and . . . and
T1 ∩ . . . ∩ Tm ≤ Sl(Γ2l(x)) then by Definition 1, rule 4, T1 ∩ . . . ∩ Tm ≤
S1(Γ21(x))∩ . . .∩ Sl(Γ2l(x)). As S1(T

′
1)∩ . . .∩ Sl(T

′
l ) ≤ T , then by Def-

inition 1, rule 3, S1(Γ21(x)) ∩ . . . ∩ Sl(Γ2l(x)) → S1(T
′
1) ∩ . . . ∩ Sl(T

′
l ) ≤

T1 ∩ . . . ∩ Tm → T . Therefore, by Definition 1, rule 5, (S1(Γ21(x)) ∩
. . . ∩ Sl(Γ2l(x)) → S1(T

′
1)) ∩ . . . ∩ (S1(Γ21(x)) ∩ . . . ∩ Sl(Γ2l(x)) →

Sl(T
′
l )) ≤ T1 ∩ . . . ∩ Tm → T . By Definition 1, rule 2, S1(Γ21(x) →

T ′
1) ∩ . . . ∩ Sl(Γ2l(x) → T ′

l ) ≤ T1 ∩ . . . ∩ Tm → T .

• x ̸∈ dom(Γ2). By the induction hypothesis on 1., exists Ax ∪ {x :
T1 ∩ . . . ∩ Tn} | Γ2 ⊢∩G e : T ′ | C such that ∃S . S |= C.

By the induction hypothesis on 2., we have that for Ax ∪ {x : T1 ∩
. . . ∩ Tn} | Γ21 ⊢∩G e : T ′

1 | C1 such that ∃S1 . S1 |= C1 and . . . and for
Ax ∪{x : T1 ∩ . . .∩Tn} | Γ2l ⊢∩G e : T ′

l | Cl such that ∃Sl . Sl |= Cl then
for each y ∈ dom(Γ1, x : T1 ∩ . . . ∩ Tm) ∩ dom(

∑l
i=1 Γ2i), we have that

(Γ1, x : T1 ∩ . . . ∩ Tm)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..l, and
⋂l

i=1 Si(T
′
i ) ≤ T .

To prove 1., we have that as Ax ∪ {x : T1 ∩ . . . ∩ Tn} | Γ2 ⊢∩G e : T ′ | C
such that ∃S . S |= C then by rule C-Abs:2, exists A | Γ2 ⊢∩G λx :
T1 ∩ . . . ∩ Tn . e : T1 → T ′ ∩ . . . ∩ Tn → T ′ | C and S |= C.

To prove 2., we have that for Ax∪{x : T1∩ . . .∩Tn} | Γ21 ⊢∩G e : T ′
1 | C1

then A | Γ21 ⊢∩G λx : T1 ∩ . . . ∩ Tn . e : T1 → T ′
1 ∩ . . . ∩ Tn → T ′

1 | C1

and S1 |= C1 and . . . and for Ax ∪{x : T1 ∩ . . .∩Tn} | Γ2l ⊢∩G e : T ′
l | Cl

then A | Γ2l ⊢∩G λx : T1 ∩ . . .∩Tn . e : T1 → T ′
l ∩ . . .∩Tn → T ′

l | Cl and
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Sn |= Cn.

To prove 2.a), as for each y ∈ dom(Γ1, x : T1∩ . . .∩Tm)∩dom(
∑l

i=1 Γ2i),
we have that (Γ1, x : T1 ∩ . . . ∩ Tm)(y) ≤ Si(Γ2i(y)), ∀i ∈ 1..l, then
Γ1(y) ≤ Si(Γ2i(y)).

To prove 2.b), as x does not occur in e, then T1 and . . . and Tn are not
affected by S1, . . . , Sn. Therefore S1(T1∩ . . .∩Tn) = T1∩ . . .∩Tn and . . .
and Sl(T1∩. . .∩Tn) = T1∩. . .∩Tn. Therefore, S1((T1 → T ′

1)∩. . .∩(Tn →
T ′
1))∩ . . .∩Sl((T1 → T ′

l )∩ . . .∩(Tn → T ′
l )) = (T1 → S1(T

′
1))∩ . . .∩(Tn →

S1(T
′
1)) ∩ . . . ∩ (T1 → Sl(T

′
l )) ∩ . . . ∩ (Tn → Sl(T

′
l )). Then, by Definition

1, rule 2, (T1 → S1(T
′
1))∩ . . .∩(Tn → S1(T

′
1))∩ . . .∩(T1 → Sl(T

′
l ))∩ . . .∩

(Tn → Sl(T
′
l )) ≤ (T1∩ . . .∩Tm → S1(T

′
1))∩ . . .∩(T1∩ . . .∩Tm → Sl(T

′
l )).

Then, by Definition 1, rule 5, (T1 ∩ . . .∩Tm → S1(T
′
1))∩ . . .∩ (T1 ∩ . . .∩

Tm → Sl(T
′
l )) ≤ T1∩. . .∩Tm → S1(T

′
1)∩. . .∩Sl(T

′
l ). Then, by Definition

1, rule 3, T1 ∩ . . . ∩ Tm → S1(T
′
1) ∩ . . . ∩ Sl(T

′
l ) ≤ T1 ∩ . . . ∩ Tm → T .

– Rule T-App. If Γ ⊢∩G e1 e2 : T then Γ ⊢∩G e1 : PM , PM▷T1∩. . .∩Tn → T ,
Γ ⊢∩G e2 : T ′

1 ∩ . . . ∩ T ′
n and T ′

1 ≲ T1 and . . . and T ′
n ≲ Tn. There are two

possibilities:
• Using rule C-App. By the induction hypothesis on 1., exists A | Γ1 ⊢∩G

e1 : PM ′ | C1 such that ∃S1 . S1 |= C1 and exists A | Γ2 ⊢∩G e2 : T ′′ | C2

such that ∃S2 . S2 |= C2.

By the induction hypothesis on 2., we have that for A | Γ11 ⊢∩G e1 :
PM1 | C11 such that ∃S11 . S11 |= C11 and . . . and A | Γ1n′ ⊢∩G e1 :
PM1n′ | C1n′ such that ∃S1n′ . S1n′ |= C1n′ then for each x ∈ dom(Γ )∩
dom(

∑n′

i=1 Γ1i), we have that Γ (x) ≤ S1i(Γ1i(x)) and
⋂n′

i=1 S1i(PMi) ≤
PM .

Also, by the induction hypothesis on 2., we have that for A | Γ21 ⊢∩G

e2 : T ′′
1 | C21 such that ∃S21 . S21 |= C21 and . . . and A | Γ2m′ ⊢∩G e2 :

T ′′
m′ | C2m′ such that ∃S2m′ . S2m′ |= C2m′ then for each x ∈ dom(Γ ) ∩

dom(
∑m′

j=1 Γ2j), we have that Γ (x) ≤ S2j(Γ2j(x)) and
⋂m′

j=1 S2j(T
′′
j ) ≤

T ′
1 ∩ . . . ∩ T ′

n.

To prove 1., we want to prove that since A | Γ1 ⊢∩G e1 : PM ′ | C1

such that ∃S1 . S1 |= C1 and since A | Γ2 ⊢∩G e2 : T ′′ | C2 such that
∃S2 . S2 |= C2, and for cod(PM ′)

.
= T3 | C3 and T ′′ ≲̇ dom(PM ′) | C4,

then exists A | Γ1 + Γ2 ⊢∩G e1 e2 : T3 | C1 ∪ C2 ∪ C3 ∪ C4 such that
∃Sk . Sk |= C1 ∪ C2 ∪ C3 ∪ C4.

To prove 2., we want to prove that, for ∀i ∈ 1..n′ and ∀j ∈ 1..m′ such
that A | Γ1i ⊢∩G e1 : PMi | C1i such that ∃S1i . S1i |= C1i, A | Γ2j ⊢∩G

e2 : T ′′
j | C2j such that ∃S2j . Sj2 |= C2j , cod(PMi)

.
= T3i | C3i and

T ′′
j ≲̇ dom(PMi) | C4k, with k ∈ 1..i∗j then for A | Γ1i+Γ2j ⊢∩G e1 e2 :
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T3i | C1i ∪ C2j ∪ C3i ∪ C4k, such that ∃Sk . Sk |= C1i ∪ C2j ∪ C3i ∪ C4k

then 2.a) for each x ∈ dom(Γ ) ∩ dom(Γ1i + Γ2j) we have that Γ (x) ≤
Sk(Γ1i + Γ2j)(x), and 2.b) S1(T13) ∩ . . . ∩ Sn′∗m′(Tn′3) ≤ T . We define
dom▷ as dom▷(Dyn) = Dyn and dom▷(T1 → T2) = T1 and cod▷ as
cod▷(Dyn) = Dyn and cod▷(T1 → T2) = T2. Since cod▷(PM) = T , we
want to prove that Sk(Ti3) ≤ cod▷(Si1(PMi)).

By Definition 1, rule 4, we have that Γ (x) ≤ (S1i(Γ1i) + S2j(Γ2j))(x).
Since substitutions in S1i don’t affect Γ2j and substitutions in S2j don’t
affect Γ1i, then Γ (x) ≤ (S1i ◦ S2j(Γ1i + Γ2j))(x). For an S3i |= C3i and
S4k |= C4k, S3i doesn’t affect S2j .

There are 3 possibilities:

∗ PMi = X. Proof for 1. We have that exists A | Γ1 ⊢∩G e1 : PM ′ | C1

such that ∃S1 . S1 |= C1 and exists A | Γ2 ⊢∩G e2 : T ′′ | C2 such
that ∃S2 . S2 |= C2, and for cod(X)

.
= X2 | {X .

= X1 → X2}
and T ′′ ≲̇ dom(PM ′) | {X .

= X3 → X4, T
′′ ≲̇ X3} then, by rule

C-App, A | Γ1 + Γ2 ⊢∩G e1 e2 : T3 | C1 ∪ C2 ∪ {X .
= X1 →

X2} ∪ {X .
= X3 → X4, T

′′ ≲̇ X3}. We now have to prove that
∃S . S |= C1 ∪ C2 ∪ {X .

= X1 → X2} ∪ {X .
= X3 → X4, T

′′ ≲̇ X3}.
Since S2(T

′′) ≤ T ′
1 ∩ . . . ∩ T ′

n, and T ′
1 ≲ T1 and . . . and T ′

n ≲ Tn and
T1 ∩ . . . ∩ Tn ≤ dom▷S1(PM ′), then S2(T

′′) ≲ dom▷(S1(PM ′)).
Therefore, it is proved.

Proof for 2. For all i ∈ 1..n′, j ∈ 1..m′, such that A | Γ1i ⊢∩G

e1 : PMi | C1i and ∃S1i . S1i |= C1i, A | Γ2j ⊢∩G e2 : T ′′
j | C2j and

∃S2j . S2j |= C2j , cod(PMi)
.
= T3i | C3i and T ′′

j ≲̇ dom(PMi) | C4k,
then A | Γ1i + Γ2j ⊢∩G e1 e2 : T3i | C1i ∪ C2j ∪ C3i ∪ C4k, with
k ∈ 1..i ∗ j.

Since PMi is a type variable, then there exists a term variable x such
that PMi = Γ1i(x) and so we have that C3i = {X .

= X1 → X2} and
Ck4 = {X .

= X3 → X4, T
′′
j ≲̇ X3}. As Γ (x) ≤ S1i(X) and, since we

are dealing with an expression application, Γ (x) = T1 → T for some
simple types T1 and T , then T1 → T ≤ S1i(X). Since substitutions
don’t introduce intersection types, then T1 → T = S1i(X).

Proof for 2.a). If Sk |= T ′′
j ≲̇ X3, then by Definition 3, Sk(T

′′
j ) ≲

Sk(X3). If T ′′
j ∈ cod(S2j(Γ2j)) and T ′′

j is static, then S2j(Γ2j)(x) ≤
Sk(Γ2j)(x). Also, since X ∈ cod(Si1(Γi1)), then Si1(Γi1) ≤ Sk(Γi1).
For a Sk such that Sk |= Ci1∪Cj2∪Ci3∪Ck4, Γ (x) ≤ Sk(Γi1+Γj2)(x).

Proof for 2.b). We have that T = cod▷(Si1(PMi)) and Sk(Ti3) = T .
∗ PMi = T3 → T4. We have that exists A | Γ1 ⊢∩G e1 : PM ′ | C1

such that ∃S1 . S1 |= C1 and exists A | Γ2 ⊢∩G e2 : T ′′ | C2
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such that ∃S2 . S2 |= C2, and for cod(T3 → T4)
.
= T4 | {} and

T ′′ ≲̇ dom(T3 → T4) | {T ′′ ≲̇ T3} then, by rule C-App, A | Γ1 +

Γ2 ⊢∩G e1 e2 : T4 | C1 ∪ C2 ∪ {T ′′ ≲̇ T3}. We now have to prove
that ∃S . S |= C1 ∪ C2 ∪ {T ′′ ≲̇ T3}. Since S2(T

′′) ≤ T ′
1 ∩ . . . ∩ T ′

n,
and T ′

1 ≲ T1 and . . . and T ′
n ≲ Tn and T1 ∩ . . . ∩ Tn ≤ S1(T3), then

S2(T
′′) ≲ S1(T3). Therefore, it is proved.

For all i ∈ 1..n′, j ∈ 1..m′, such that A | Γ1i ⊢∩G e1 : PMi | C1i and
∃S1i . S1i |= C1i, A | Γ2j ⊢∩G e2 : T ′′

j | C2j and ∃S2j . S2j |= C2j ,
cod(PMi)

.
= T3i | C3i and T ′′

j ≲̇ dom(PMi) | C4k, then A | Γ1i +
Γ2j ⊢∩G e1 e2 : T3i | C1i ∪ C2j ∪ C3i ∪ C4k, with k ∈ 1..i ∗ j.

Proof for 2.a). Si3 doesn’t affect Γi1 and Γj2. We don’t allow variables
in annotations in lambda abstractions. If T3 = Dyn or T ′′

j = Dyn

then [] |= T ′′
j ≲̇ T3 and so, Γ (x) ≤ Sk(Γi1 + Γj2)(x). One way that

PMi = T3 → T4 is if e1 is a term variable and T3 is a type variable,
and so T3 ̸∈ Γi1 then Γ (x) ≤ Sk(Γi1 + Γj2)(x). Another way that
PMi = T3 → T4 is if e1 is a lambda abstraction and T3 → T4 ∈ Γi1,
and so T3 is not a type variable, then Γ (x) ≤ Sk(Γi1+Γj2)(x). There-
fore, if T ′′

j ∈ Γj2, and as Sk |= T ′′
j ≲̇ T3 then Γ (x) ≤ Sk(Γi1+Γj2)(x).

Proof for 2.b). We have that Ti3 = T4, then cod▷(Si1(PMi)) =
Si1(Ti3). We want to prove that Si(Ti3) ≤ Si1(Ti3). If Ti3 is not a
variable, then Si(Ti3) = Si1(Ti3). If Ti3 is a variable, then either
Ti3 ̸= T3, in which case Sk doesn’t affect Si1(T4) and so Si1(T4) =

Sk(T4). Otherwise, T3 = T4 = Ti3. Therefore, as Sk |= T ′′
j ≲̇ T4. So,

Sk(T4) ≲ Si1(T4). Since Sk doesn’t have a subtitution that turns T4

into Dyn, then by Lemma 10, Sk(T4) ≤ Si1(T4).
∗ PMi = Dyn. Proof for 1. We have that exists A | Γ1 ⊢∩G e1 :
Dyn | C1 such that ∃S1 . S1 |= C1 and exists A | Γ2 ⊢∩G e2 :
T ′′ | C2 such that ∃S2 . S2 |= C2, and for cod(Dyn)

.
= Dyn | {}

and T ′′ ≲̇ dom(Dyn) | {T ′′ ≲̇ Dyn} then, by rule C-App, A | Γ1 +

Γ2 ⊢∩G e1 e2 : Dyn | C1 ∪ C2 ∪ {T ′′ ≲̇ Dyn}. Since ∃S . S |=
C1 ∪ C2 ∪ {T ′′ ≲̇ Dyn}, it is proved.

Proof for 2. For all i ∈ 1..n′, j ∈ 1..m′, such that A | Γ1i ⊢∩G

e1 : PMi | C1i and ∃S1i . S1i |= C1i, A | Γ2j ⊢∩G e2 : T ′′
j | C2j and

∃S2j . S2j |= C2j , cod(PMi)
.
= T3i | C3i and T ′′

j ≲̇ dom(PMi) | C4k,
then A | Γ1i + Γ2j ⊢∩G e1 e2 : T3i | C1i ∪ C2j ∪ C3i ∪ C4k, with
k ∈ 1..i ∗ j.

Proof for 2.a). For A | Γ1i+Γ2j ⊢∩G e1 e2 : T3i | C1i∪C2j∪C3i∪C4k,
with k ∈ 1..i ∗ j such that Sk |= C1i ∪C2j ∪C3i ∪C4k, we have that
Ci3 = {} and Ck4 = {T ′′

j ≲̇ Dyn}. Therefore, Sk = S1 ◦ S2 and then
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Γ (x) ≤ Sk(Γi1 + Γj2)(x).

Proof for 2.b). We have that cod▷(Si1(PMi)) = Dyn and Si(Ti3) =
Dyn.

• Using rule C-App∩. By the induction hypothesis on 1., exists A | Γ ′ ⊢∩G

e1 : T1 ∩ . . .∩ Tm → T0 | C such that ∃S . S |= C and exists A | Γ ′′ ⊢∩G

e2 : T ′′ | C ′′ such that ∃S′′ . S′′ |= C ′′ and . . . and exists A | Γ ′′ ⊢∩G

e2 : T ′′ | C ′′ such that ∃S′′ . S′′ |= C ′′.

By the induction hypothesis on 2., we have that for A | Γ1 ⊢∩G e1 :
T11 ∩ . . . ∩ T1m1 → T10 | C1 such that ∃S1 . S1 |= C1 and . . . and for
A | Γn′ ⊢∩G e1 : Tn′1 ∩ . . . ∩ Tn′mn′ → Tn′0 | Cn′ such that ∃Sn′ . Sn′ |=
Cn′ then for each x ∈ dom(Γ ) ∩ dom(

∑n′

i=1 Γi), we have that Γ (x) ≤
Si(Γi(x)) and

⋂n′

i=1 Si(Ti1 ∩ . . . ∩ Timi → Ti0) ≤ PM .

Also, by the induction hypothesis on 2., we have that for A | Γ ′
1 ⊢∩G e2 :

T ′′
1 | C ′

1 such that ∃S′
1 . S′

1 |= C ′
1 and . . . and for A | Γ ′

k ⊢∩G e2 : T ′′
k | C ′

k

such that ∃S′
k . S′

k |= C ′
k then for each x ∈ dom(Γ )∩ dom(

∑k
l=1 Γ

′
i ), we

have that Γ (x) ≤ S′
l(Γ

′
l (x)) and

⋂k
l=1 S

′
l(T

′′
l ) ≤ T ′

1 ∩ . . . ∩ T ′
n.

Proof for 1. If S(T1 ∩ . . . ∩ Tm → T0) ≤ PM , then by Definition 1 and
▷, PM = T1 ∩ . . .∩ Tn → T . Therefore, T1 ∩ . . .∩ Tn ≤ S(T1 ∩ . . .∩ Tm)
and S(T0) ≤ T . We have that S′′(T ′′) ≤ T ′

1 ∩ . . . ∩ T ′
n and T ′

1 ≲ T1

and . . . and T ′
n ≲ Tn and T1 ∩ . . . ∩ Tn ≤ S(T1 ∩ . . . ∩ Tm). Therefore,

we have that S′′(T ′′) ≲ S(T1) and . . . and S′′(T ′′) ≲ S(Tm). There-
fore, we have that A | Γ ′ + Γ ′′ + . . . + Γ ′′ ⊢∩G e1 e2 : T0 | C ∪ C ′′ ∪
{T ′′ ≲̇ T1} ∪ . . . ∪ C ′′ ∪ {T ′′ ≲̇ Tm} such that S ◦ S′′ ◦ . . . ◦ S′′ |=
C ∪ C ′′ ∪ {T ′′ ≲̇ T1} ∪ . . . ∪ C ′′ ∪ {T ′′ ≲̇ Tm}.

Proof for 2. For all i ∈ 1..n′, j ∈ 1..mi, l, l′ ∈ 1..k, such that A | Γi ⊢∩G

e1 : Ti1 ∩ . . . ∩ Timi → Ti0 | Ci such that ∃Si . Si |= Ci, A | Γ ′
l ⊢∩G e2 :

T ′′
l | C ′

l such that ∃S′
l . S′

l |= C ′
l and . . . and A | Γ ′

l′ ⊢∩G e2 : T ′′
l′ | C ′

l′

such that ∃S′
l′ . S′

l |= C ′
l′ then A | Γi + Γ ′

l + . . . + Γ ′
l′ ⊢∩G e1 e2 :

Ti0 | Ci ∪ C ′
l ∪ {T ′′

l ≲̇ Ti1} ∪ . . . ∪ C ′
l′ ∪ {T ′′

l′ ≲̇ Timi}.

Proof for 2.a). By Definition 1, rule 4, we have that Γ (x) ≤ (Si(Γi) +
S′
l(Γ

′
l )+. . .+S′

l′(Γ
′
l′))(x). Since substitutions in Si and S′

l and . . . and S′
l′ ,

don’t affect each other, then Γ (x) ≤ Si◦S′
l◦. . .◦S′

l′(Γi+Γ ′
l +. . .+Γ ′

l′)(x).
For all i ∈ 1..n′, j ∈ 1..mi, l, l′ ∈ 1..k, for A | Γi + Γ ′

l + . . . + Γ ′
l′ ⊢∩G

e1 e2 : Ti0 | Ci ∪ C ′
l ∪ {T ′′

l ≲̇ Ti1} ∪ . . . ∪ C ′
l′ ∪ {T ′′

l′ ≲̇ Timi} such
that ∃Si ◦ S′

l ◦ S′′
l ◦ . . . ◦ S′

l′ ◦ S′′
l′ . Si ◦ S′

l ◦ S′′
l ◦ . . . ◦ S′

l′ ◦ S′′
l′ |=

Ci ∪ C ′
l ∪ {T ′′

l ≲̇ Ti1} ∪ . . . ∪ C ′
l′ ∪ {T ′′

l′ ≲̇ Timi}, with S′′
l |= T ′′

l ≲̇ Ti1

and . . . and S′′
l′ |= T ′′

l′ ≲̇ Timi , then we have several possibilities. If
either T ′′

l = Dyn or Tij = Dyn, then [] |= T ′′
l ≲̇ Tij , and therefore
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Γ (x) ≤ Si◦S′
l◦S′′

l ◦. . .◦S′
l′◦S′′

l′(Γi+Γ ′
l+. . .+Γ ′

l′)(x). If T ′′
l ∈ cod(Γ ′

l ), since
S′′
l |= T ′′

l ≲̇ Tij , then Γ (x) ≤ Si◦S′
l◦S′′

l ◦. . .◦S′
l′◦S′′

l′(Γi+Γ ′
l+. . .+Γ ′

l′)(x).
If e1 is a lambda abstraction, then Timi ̸∈ cod(Γi). If e1 is a term vari-
able, then Tij → T ′′′ ∈ Γi, for some T ′′′. Since S′′

l |= T ′′
l ≲̇ Tij , then

Γ (x) ≤ Si ◦ S′
l ◦ S′′

l ◦ . . . ◦ S′
l′ ◦ S′′

l′(Γi + Γ ′
l + . . .+ Γ ′

l′)(x).

Proof for 2.b). If S1(T11∩. . .∩T1m1 → T10)∩. . .∩Sn′(T ′
n′1∩. . .∩Tn′mn′ →

Tn′0) ≤ PM , then by Definition 1 and ▷, PM = T1∩. . .∩Tn → T . There-
fore, S1(T10)∩ . . .∩ Sn′(Tn′0) ≤ T . Since Ti0 is not affected by substitu-
tions besides Si, then

⋂n′

i=1(
⋂k

l=1 . . .
⋂k

l′=1 Si◦S′
l◦S′′

l ◦· · ·◦S′
l′◦S′′

l′(Ti0)) ≤
T .

– Rule T-Gen. If Γ ⊢∩G e : T1 ∩ . . . ∩ Tn then Γ ⊢∩G e : T1 and . . . and
Γ ⊢∩G e : Tn. By the induction hypothesis on 1., exists A | Γ1 ⊢∩G e : T ′

1 | C1

such that ∃S1 . S1 |= C1 and . . . and exists A | Γn ⊢∩G e : T ′
n | Cn such that

∃Sn . Sn |= Cn.

By the induction hypothesis on 2., we have that for A | Γ11 ⊢∩G e : T ′
11 | C11

such that ∃S11 . S11 |= C11 and . . . and for A | Γ1m1 ⊢∩G e : T ′
1m1 | C1m1 such

that ∃S1m1 . S1m1 |= C1m1 then for each x ∈ dom(Γ ) ∩ dom(
∑m1

j=1 Γ1j), we
have that Γ (x) ≤ S1j(Γ1j(x)), ∀j ∈ 1..m1, and S11(T

′
11)∩ . . .∩S1m1(T ′

1m1) ≤
T1 and . . . and we have that for A | Γn1 ⊢∩G e : T ′

n1 | Cn1 such that
∃Sn1 . Sn1 |= Cn1 and . . . and for A | Γnmn ⊢∩G e : T ′

nmn | Cnmn such that
∃Snmn . Snmn |= Cnmn then for each x ∈ dom(Γ )∩dom(

∑mn

j=1 Γnj), we have
that Γ (x) ≤ Snj(Γnj(x)), ∀j ∈ 1..mn, and Sn1(T

′
n1)∩. . .∩Snmn(T ′

nmn) ≤ Tn.

Proof for 2.b). By Definition 1, we have that S11(T
′
11) ∩ . . . ∩ S1m1(T ′

1m1) ∩
. . . ∩ Sn1(T

′
n1) ∩ . . . ∩ Snmn(T ′

nmn) ≤ T1 ∩ . . . ∩ Tn.
– Rule T-Inst. If Γ1 ⊢∩G e : Ti then Γ1 ⊢∩G e : T1∩ . . .∩Tn. By the induction

hypothesis on 1., exists A | Γ2 ⊢∩G e : T ′ | C such that ∃S . S |= C.

By the induction hypothesis on 2., we have that for A | Γ21 ⊢∩G e : T ′
1 | C1

such that ∃S1 . S1 |= C1 and . . . and for A | Γ2n ⊢∩G e : T ′
n | Cn such

that ∃Sn . Sn |= Cn then for each x ∈ dom(Γ1) ∩ dom(
∑n

i=1 Γ2i), we have
Γ1(x) ≤ Si(Γ2i(x)), ∀i ∈ 1..n, and S1(T

′
1) ∩ . . . ∩ Sn(T

′
n) ≤ T1 ∩ . . . ∩ Tn.

Proof for 2.b). As, by definition 1, T1 ∩ . . . ∩ Tn ≤ Ti, by transitivity,
S1(T

′
1) ∩ . . . ∩ Sn(T

′
n) ≤ Ti.

Lemma 3 (Unification Soundness). If C ⇒ S then S |= C.

Proof. We proceed by induction on the length of the derivation tree of C ⇒ S.

Base cases:

– Rule Em. If ∅ ⇒ ∅, then by definition 3, ∅ |= ∅.

Induction step:
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– Rule CS-DynL. If {Dyn ≲̇ T} ∪ C ⇒ S then C ⇒ S. By the induction
hypothesis, S |= C. Since S(Dyn) ≲ S(T ) then S |= Dyn ≲̇ T . Therefore,
by definition 3, S |= {Dyn ≲̇ T} ∪ C.

– Rule CS-DynR. If {T ≲̇ Dyn} ∪ C ⇒ S then C ⇒ S. By the induction
hypothesis, S |= C. Since S(T ) ≲ S(Dyn) then S |= T ≲̇ Dyn. Therefore,
by definition 3, S |= {T ≲̇ Dyn} ∪ C.

– Rule CS-Refl. If {T ≲̇ T}∪C ⇒ S then C ⇒ S. By the induction hypoth-
esis, S |= C. Since S(T ) ≲ S(T ), then S |= T ≲̇ T . Therefore, by definition
3, S |= {T ≲̇ T} ∪ C.

– Rule CS-Inst. If {T1 ∩ . . . ∩ Tn ≲̇ T1 ∩ . . . ∩ Tm} ∪C ⇒ S then C ⇒ S. By
the induction hypothesis, S |= C. Since S(T1 ∩ . . .∩ Tn) ≲ S(T1 ∩ . . .∩ Tm),
then S |= T1 ∩ . . . ∩ Tn ≲̇ T1 ∩ . . . ∩ Tm. Therefore, by definition 3, S |=
{T1 ∩ . . . ∩ Tn ≲̇ T1 ∩ . . . ∩ Tm} ∪ C.

– Rule CS-Assoc. If {(T → T1)∩. . .∩(T → Tn) ≲̇ T → T1∩. . .∩Tn}∪C ⇒ S
then C ⇒ S. By the induction hypothesis, S |= C. Since S((T → T1)∩ . . .∩
(T → Tn)) ≲ S(T → T1 ∩ . . . ∩ Tn), then S |= (T → T1) ∩ . . . ∩ (T →
Tn) ≲̇ T → T1 ∩ . . . ∩ Tn. Therefore, by definition 3, S |= {(T → T1) ∩ . . . ∩
(T → Tn) ≲̇ T → T1 ∩ . . . ∩ Tn} ∪ C.

– Rule CS-Arrow. If {T1 → T2 ≲̇ T3 → T4}∪C ⇒ S then {T3 ≲̇ T1, T2 ≲̇ T4}∪
C ⇒ S. By the induction hypothesis, S |= {T3 ≲̇ T1, T2 ≲̇ T4} ∪ C. Since
S |= {T3 ≲̇ T1, T2 ≲̇ T4}, then S(T3) ≲ S(T1) and S(T2) ≲ S(T4). Therefore,
by definition 2, S(T1) → S(T2) ≲ S(T3) → S(T4). Therefore, S(T1 → T2) ≲
S(T3 → T4). By definition 3, S |= {T1 → T2 ≲̇ T3 → T4}. Therefore, by
definition 3, S |= {T1 → T2 ≲̇ T3 → T4} ∪ C.

– Rule CS-InstR. If {T ≲̇ T1∩. . .∩Tn}∪C ⇒ S then {T ≲̇ T1∧. . .∧T ≲̇ Tn}∪
C ⇒ S. By the induction hypothesis, S |= {T ≲̇ T1, . . . , T ≲̇ Tn} ∪C. Since
S |= {T ≲̇ T1, . . . , T ≲̇ Tn}, then by definition 3, S(T ) ≲ S(T1)∧. . .∧S(T ) ≲
S(Tn). Therefore, by definition 2, S(T ) ≲ S(T1) ∩ . . . ∩ S(Tn). Therefore,
S(T ) ≲ S(T1 ∩ . . . ∩ Tn). By definition 3, S |= T ≲̇ T1 ∩ . . . ∩ Tn. Therefore,
S |= {T ≲̇ T1 ∩ . . . ∩ Tn} ∪ C.

– Rule CS-ArrowL. If {T1 → T2 ≲̇ T}∪C ⇒ S then {T3 ≲̇ T1, T2 ≲̇ T4, T =

T3 → T4}∪C ⇒ S. By the induction hypothesis, S |= {T3 ≲̇ T1, T2 ≲̇ T4, T
.
=

T3 → T4}∪C. Since S |= {T3 ≲̇ T1, T2 ≲̇ T4, T
.
= T3 → T4}, then by definition

3, S(T3) ≲ S(T1) and S(T2) ≲ S(T4) and S(T ) = S(T3 → T4). By definition
of ≲, S(T1) → S(T2) ≲ S(T3) → S(T4). Therefore, S(T1 → T2) ≲ S(T3 →
T4). Since S(T ) = S(T3 → T4), then S(T1 → T2) ≲ S(T ). Therefore, by
definition 3, S |= T1 → T2 ≲̇ T . Therefore, S |= {T1 → T2 ≲̇ T} ∪ C.

– Rule CS-ArrowR. If {T ≲̇ T1 → T2}∪C ⇒ S then {T1 ≲̇ T3, T4 ≲̇ T2, T =

T3 → T4}∪C ⇒ S. By the induction hypothesis, S |= {T1 ≲̇ T3, T4 ≲̇ T2, T
.
=

T3 → T4}∪C. Since S |= {T1 ≲̇ T3, T4 ≲̇ T2, T
.
= T3 → T4}, then by definition

3, S(T1) ≲ S(T3) and S(T4) ≲ S(T2) and S(T ) = S(T3 → T4). By definition
of ≲, S(T3) → S(T4) ≲ S(T1) → S(T2). Therefore, S(T3 → T4) ≲ S(T1 →
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T2). Since S(T ) = S(T3 → T4), then S(T ) ≲ S(T1 → T2). Therefore, by
definition 3, S |= T ≲̇ T1 → T2. Therefore, S |= {T ≲̇ T1 → T2} ∪ C.

– Rule CS-Eq. If {T1 ≲̇ T2} ∪ C ⇒ S then {T1
.
= T2} ∪ C ⇒ S. By the

induction hypothesis, S |= {T1
.
= T2} ∪ C. By definition 3, S(T1) = S(T2).

By definition 2, S(T1) ≲ S(T2). By definition 3, S |= T1 ≲̇ T2. Therefore,
S |= {T1 ≲̇ T2} ∪ C.

– Rule Eq-Refl. If {T .
= T}∪C ⇒ S then C ⇒ S. By the induction hypothe-

sis, S |= C. Since S(T ) = S(T ), then by definition 3, S |= T
.
= T . Therefore,

S |= {T .
= T} ∪ C.

– Rule Eq-Arrow. If {T1 → T2
.
= T3 → T4} ∪ C ⇒ S then {T1

.
= T3, T2

.
=

T4} ∪ C ⇒ S. By the induction hypothesis, S |= {T1
.
= T3, T2

.
= T4} ∪ C.

By definition 3, S(T1) = S(T3) and S(T2) = S(T4). Then S(T1) → S(T2) =
S(T3) → S(T4). Therefore, S(T1 → T2) = S(T3 → T4). By definition 3,
S |= T1 → T2

.
= T3 → T4. Therefore, S |= {T1 → T2

.
= T3 → T4} ∪ C.

– Rule Eq-VarR. If {T .
= X} ∪ C ⇒ S then {X .

= T} ∧ C ⇒ S. By the
induction hypothesis, S |= {X .

= T} ∪ C. By definition 3, S(X) = S(T ).
Then, S(T ) = S(X). By definition 3, S |= T

.
= X. Therefore, S |= {T .

=
X} ∪ C.

– Rule Eq-VarL. If {X .
= T} ∪ C ⇒ S ◦ [X 7→ T ] then [X 7→ T ]C ⇒ S. By

the induction hypothesis, S |= [X 7→ T ]C. Then, for each constraint of the
form T ′

1
.
= T ′

2 or T ′
1 ≲̇ T ′

2 in C, S([X 7→ T ]T ′
1) = S([X 7→ T ]T ′

2) or S([X 7→
T ]T ′

1) ≤ S([X 7→ T ]T ′
2). Therefore, S ◦ [X 7→ T ](T ′

1) = S ◦ [X 7→ T ](T ′
2) or

S ◦ [X 7→ T ](T ′
1) ≤ S ◦ [X 7→ T ](T ′

2). Therefore, S ◦ [X 7→ T ] |= C. It follows
that S◦[X 7→ T ] |= {X .

= T}∪C, because S◦[X 7→ T ](X) = S◦[X 7→ T ](T ).
Therefore, S ◦ [X 7→ T ] |= {X .

= T} ∪ C.

Lemma 4 (Unification Completeness). If S1 |= C then C ⇒ S2 for some
S2, and furthermore S1 = S ◦ S2 for some S.

Proof. We proceed by induction on the breakdown of constraint sets by the uni-
fication rules.

Base cases:

– Rule Em. If S1 |= ∅ then ∅ ⇒ ∅. As S1 = S ◦ ∅ for some S1, it is proved.

Induction step:

– Rule CS-DynL. If S1 |= {Dyn ≲̇ T} ∪ C then by definition 3, S1 |= C.
By the induction hypothesis, C ⇒ S2 and S1 = S ◦ S2. As C ⇒ S2, then
{Dyn ≲̇ T} ∪ C ⇒ S2.

– Rule CS-DynR. If S1 |= {T ≲̇ Dyn} ∪ C then by definition 3, S1 |= C.
By the induction hypothesis, C ⇒ S2 and S1 = S ◦ S2. As C ⇒ S2, then
{T ≲̇ Dyn} ∪ C ⇒ S2.

– Rule CS-Refl. If S1 |= {T ≲̇ T} ∪ C then by definition 3, S1 |= C. By
the induction hypothesis, C ⇒ S2 and S1 = S ◦ S2. As C ⇒ S2, then
{T ≲̇ T} ∪ C ⇒ S2.
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– Rule CS-Inst. If S1 |= {T1∩. . .∩Tn ≲̇ T1∩. . .∩Tm}∪C then by definition 3,
S1 |= C. By the induction hypothesis, C ⇒ S2 and S1 = S ◦S2. As C ⇒ S2,
then {T1 ∩ . . . ∩ Tn ≲̇ T1 ∩ . . . ∩ Tm} ∪ C ⇒ S2.

– Rule CS-Assoc. If S1 |= {(T → T1)∩. . .∩(T → Tn) ≲̇ T → T1∩. . .∩Tn}∪C
then by definition 3, S1 |= C. By the induction hypothesis, C ⇒ S2 and
S1 = S ◦ S2. As C ⇒ S2, then {(T → T1) ∩ . . . ∩ (T → Tn) ≲̇ T →
T1 ∩ . . . ∩ Tn} ∪ C ⇒ S2.

– Rule CS-Arrow. If S1 |= {T1 → T2 ≲̇ T3 → T4} ∪ C then by definition
3, S1(T1 → T2) ≲ S1(T3 → T4) and S1 |= C. Then, S1(T1) → S1(T2) ≲
S1(T3) → S1(T4) and by definition 2, S1(T3) ≲ S1(T1) and S1(T2) ≲ S1(T4).
Then, by definition 3, S1 |= {T3 ≲̇ T1, T2 ≲̇ T4} ∪ C. By the induction
hypothesis, {T3 ≲̇ T1, T2 ≲̇ T4} ∪ C ⇒ S2 and S1 = S ◦ S2. Therefore,
{T1 → T2 ≲̇ T3 → T4} ∪ C ⇒ S2.

– Rule CS-InstR. If S1 |= {T ≲̇ T1 ∩ . . . ∩ Tn} ∪ C then by definition 3,
S1(T ) ≲ S1(T1 ∩ . . . ∩ Tn) and S1 |= C. Therefore, by definition 2, S1(T ) ≲
S1(T1) ∩ . . . ∩ S1(Tn), and therefore, S1(T ) ≲ S1(T1) and . . . and S1(T ) ≲
S1(Tn). By definition 3, S1 |= {T ≲̇ T1, . . . , T ≲̇ Tn} ∪ C. By the induction
hypothesis, {T ≲̇ T1, . . . , T ≲̇ Tn} ∪ C ⇒ S2 and S1 = S ◦ S2. Therefore,
{T ≲̇ T1 ∩ . . . ∩ Tn} ∪ C ⇒ S2.

– Rule CS-ArrowL. If S1 |= {T1 → T2 ≲̇ T} ∪ C then, by definition 3,
S1(T1 → T2) ≲ S1(T ) and S1 |= C. Then, it exists a T3 and T4, such
that S1(T ) = S1(T3 → T4), so that S1(T1 → T2) ≲ S1(T3 → T4). By
definition 2, S1(T3) ≲ S1(T1) and S1(T2) ≲ S1(T4). By definition 3, S1 |=
T3 ≲̇ T1, T2 ≲̇ T4, T

.
= T3 → T4 ∪C. By the induction hypothesis, {T3 ≲̇ T1,

T2 ≲̇ T4, T
.
= T3 → T4} ∪ C ⇒ S2 and S1 = S ◦ S2. Therefore, {T1 →

T2 ≲̇ T} ∪ C ⇒ S2.
– Rule CS-ArrowR. If S1 |= {T ≲̇ T1 → T2} ∪ C then, by definition 3,

S1(T ) ≲ S1(T1 → T2) and S1 |= C. Then, it exists a T3 and T4, such
that S1(T ) = S1(T3 → T4), so that S1(T1 → T2) ≲ S1(T3 → T4). By
definition 2, S1(T3) ≲ S1(T1) and S1(T2) ≲ S1(T4). By definition 3, S1 |=
T3 ≲̇ T1, T2 ≲̇ T4, T

.
= T3 → T4 ∪C. By the induction hypothesis, {T3 ≲̇ T1,

T2 ≲̇ T4, T
.
= T3 → T4} ∪ C ⇒ S2 and S1 = S ◦ S2. Therefore, {T1 →

T2 ≲̇ T} ∪ C ⇒ S2.
– Rule CS-Eq. If S1 |= {T1 ≲̇ T2} ∪C and T1, T2 ∈ {Int ,Bool} ∪ TV ar then,

by definition 3, S1(T1) ≲ S1(T2) and S1 |= C. Therefore, by definition 2,
S1(T1) = S1(T2). Then, S1 |= {T1

.
= T2}. By the induction hypothesis,

{T1
.
= T2} ⇒ S2 and S1 = S ◦ S2. Therefore, {T1 ≲̇ T2} ⇒ S2.

– Rule Eq-Refl. If S1 |= {T .
= T}∪C1 then, by definition 3, S1 |= C. By the

induction hypothesis, C ⇒ S2 and S1 = S◦S2. Therefore, {T .
= T}∪C ⇒ S2.

– Rule Eq-Arrow. If S1 |= {T1 → T2
.
= T3 → T4} ∪ C then, by definition

3, S1(T1 → T2) = S1(T3 → T4) and S1 |= C. Then, S1(T1) → S1(T2) =
S1(T3) → S1(T4) and S1(T1) = S1(T3) and S1(T2) = S1(T4). Then, by
definition 3, S1 |= {T1

.
= T3, T2

.
= T4} ∪ C. By the induction hypothesis,
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{T1
.
= T3, T2

.
= T4}∪C ⇒ S2 and S1 = S ◦S2. Therefore, {T1 → T2

.
= T3 →

T4} ∪ C ⇒ S2.
– Rule Eq-VarR. If S1 |= {T .

= X} ∪C then, by definition 3, S1(T ) = S1(X)
and S1 |= C. Then, S1(X) = S1(T ) and therefore, S1 |= {X .

= T} ∪ C. By
the induction hypothesis, {X .

= T} ∪ C ⇒ S2 and S1 = S ◦ S2. Therefore,
{T .

= X} ∪ C ⇒ S2.
– Rule Eq-VarL. If S1 |= {X .

= T} ∪C then, by definition 3, S1(X) = S1(T )
and S1 |= C. Then, S1 |= [X 7→ T ]C. By the induction hypothesis, [X 7→
T ]C ⇒ S2 and S1 = S ◦ S2. Therefore, {X .

= T} ∪ C ⇒ S2 ◦ [X 7→ T ] and
S1 = S ◦ S2 ◦ [X 7→ T ].

Lemma 5 (Unification Soundness). If G | C ⇒ S then S |= C.

Proof. Only proofs for cases Em, CS-DynL, CS-DynR and Eq-VarL are in-
cluded since proofs for other cases are straightforward adaptations from the
proofs of Lemma 3. We proceed by induction on the length of the derivation tree
of G | C ⇒ S.

Base cases:

– Rule Em. If G | ∅ ⇒ [V ars(G) 7→ Dyn], then by definition 3, [V ars(G) 7→ Dyn]
|= ∅.

Induction step:

– Rule CS-DynL. If G | {Dyn ≲̇ T} ∪C ⇒ S then G ∪ {T} | C ⇒ S. By the
induction hypothesis, S |= C. Since S(Dyn) ≲ S(T ) then S |= Dyn ≲̇ T .
Therefore, by definition 3, S |= {Dyn ≲̇ T} ∪ C.

– Rule CS-DynR. If G | {T ≲̇ Dyn} ∪C ⇒ S then G ∪ {T} | C ⇒ S. By the
induction hypothesis, S |= C. Since S(T ) ≲ S(Dyn) then S |= T ≲̇ Dyn.
Therefore, by definition 3, S |= {T ≲̇ Dyn} ∪ C.

– Rule Eq-VarL. If G | {X .
= T} ∪C ⇒ S ◦ [X 7→ T ] then [X 7→ T ]G | [X 7→

T ]C ⇒ S. By the induction hypothesis, S |= [X 7→ T ]C. Then, for each
constraint of the form T ′

1
.
= T ′

2 or T ′
1 ≲̇ T ′

2 in C, S([X 7→ T ]T ′
1) = S([X 7→

T ]T ′
2) or S([X 7→ T ]T ′

1) ≤ S([X 7→ T ]T ′
2). Therefore, S ◦ [X 7→ T ](T ′

1) =
S ◦ [X 7→ T ](T ′

2) or S ◦ [X 7→ T ](T ′
1) ≤ S ◦ [X 7→ T ](T ′

2). Therefore, S ◦
[X 7→ T ] |= C. It follows that S ◦ [X 7→ T ] |= {X .

= T} ∪ C, because
S ◦ [X 7→ T ](X) = S ◦ [X 7→ T ](T ). Therefore, S ◦ [X 7→ T ] |= {X .

= T}∪C.

Lemma 6 (Unification Completeness). If S1 ◦ [V ars(G) 7→ Dyn] |= C then
G | C ⇒ S2 for some S2, and furthermore S1 ◦ [V ars(G) 7→ Dyn] = S ◦ S2 for
some S.

Proof. Only proofs for cases Em, CS-DynL, CS-DynR and Eq-VarL are in-
cluded since proofs for other cases are straightforward adaptations from the
proofs of Lemma 4. We proceed by induction on the breakdown of constraint
sets by the unification rules.

Base cases:
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– Rule Em. If S1 ◦ [V ars(G) 7→ Dyn] |= ∅ then G | ∅ ⇒ [V ars(G) 7→ Dyn]. As
S1 ◦ [V ars(G) 7→ Dyn] = S ◦ [V ars(G) 7→ Dyn] for some S, it is proved.

Induction step:

– Rule CS-DynL. If S1 ◦ [V ars(G) 7→ Dyn] |= {Dyn ≲̇ T} ∪ C then by
definition 3, S1 ◦ [V ars(G) 7→ Dyn] |= C. By the induction hypothesis,
G∪{T} | C ⇒ S2 and S1 ◦ [V ars(G) 7→ Dyn] = S ◦S2. As G∪{T} | C ⇒ S2,
then G | {Dyn ≲̇ T} ∪ C ⇒ S2.

– Rule CS-DynR. If S1 ◦ [V ars(G) 7→ Dyn] |= {T ≲̇ Dyn} ∪ C then by
definition 3, S1 ◦ [V ars(G) 7→ Dyn] |= C. By the induction hypothesis,
G∪{T} | C ⇒ S2 and S1 ◦ [V ars(G) 7→ Dyn] = S ◦S2. As G∪{T} | C ⇒ S2,
then G | {T ≲̇ Dyn} ∪ C ⇒ S2.

– Rule Eq-VarL. If S1 ◦ [V ars(G) 7→ Dyn] |= {X .
= T} ∪ C then, by defi-

nition 3, S1 ◦ [V ars(G) 7→ Dyn](X) = S1 ◦ [V ars(G) 7→ Dyn](T ) and S1 ◦
[V ars(G) 7→ Dyn] |= C. Then, S1 |= [X 7→ T ]C. By the induction hypoth-
esis, [X 7→ T ]G | [X 7→ T ]C ⇒ S2 and S1 ◦ [V ars(G) 7→ Dyn] = S ◦ S2.
Therefore, G | {X .

= T} ∪ C ⇒ S2 ◦ [X 7→ T ].

Theorem 2 (Soundness). If (Γ, T, S) ∈ I(e) then S(Γ ) ⊢∩G S(e) : S(T ).

Proof. If (Γ, T, S) ∈ I(e) then by Definition 5, ∅ | Γ ⊢∩G e : T | C, ∅ | C ⇒ S.
By Lemma 5, S |= C. Therefore, by Lemma 1, S(Γ ) ⊢∩G S(e) : S(T ).

Theorem 3 (Principal Typings). If Γ1 ⊢∩G e : T1 then there are Γ21, . . . , Γ2n,
T21, . . . , T2n, S21, . . . , S2n and S1, . . . , Sn such that ((Γ21, T21, S21), . . . , (Γ2n, T2n, S2n)) =
I(e) and, for each x ∈ dom(Γ1) ∩ dom(Γ21 + . . . + Γ2n), we have Γ1(x) ≤
S1 ◦ S21(Γ21(x)) and . . . and Γ1(x) ≤ Sn ◦ S2n(Γ2n(x)) and S1 ◦ S21(T21) ∩
. . . ∩ Sn ◦ S2n(T2n) ≤ T1.

Proof. If Γ1 ⊢∩G e : T1 then by Lemma 2, for A | Γ21 ⊢∩G e : T21 | C1 such
that ∃S11 . S11 |= C1 and . . . and for A | Γ2n ⊢∩G e : T2n | Cn such that
∃S1n . S1n |= Cn then for each x ∈ dom(Γ1) ∩ dom(Γ21 + . . . + Γ2n), we have
Γ1(x) ≤ S11(Γ21(y)) and . . . and Γ1(x) ≤ S1n(Γ2n(y)) and S11(T21) ∩ . . . ∩
S1n(T2n) ≤ T1. By Lemma 6, G1 | C1 ⇒ S21 for some S21 and furthermore
S11 = S1 ◦ S21, for some S1 and . . . and Gn | Cn ⇒ S2n for some S2n and
furthermore S1n = Sn ◦ S2n, for some Sn. As A | Γ21 ⊢∩G e : T21 | C1 and
G1 | C1 ⇒ S21 and . . . and A | Γ2n ⊢∩G e : T2n | Cn and Gn | Cn ⇒ S2n,
then by definition 5, ((Γ21, T21, S21), . . . , (Γ2n, T2n, S2n)) = I(e) and for each
x ∈ dom(Γ1) ∩ dom(Γ21 + . . . + Γ2n), Γ1(x) ≤ S1 ◦ S21(Γ21(x)) and . . . and
Γ1(x) ≤ Sn ◦ S2n(Γ2n(x)) and S1 ◦ S21(T21) ∩ . . . ∩ Sn ◦ S2n(T2n) ≤ T1.

Lemma 8 (Termination of Constraint Solving). C ⇒ S terminates for
every set of constraints C.

Proof. A unification problem C ⇒ S is solved if C = ∅. We define the following
metrics with respect to the unification problem C ⇒ S:
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– NICS is the number of unique intersection types in the left of an ≲̇ constraint
+ the number of unique intersection types in the right of an ≲̇ constraint

– NCCS is the number of type constructors in ≲̇ constraints
– NCS is the number of ≲̇ constraints
– NVEq is the number of different type variables in .

= constraints
– NCEq is the number of type constructors in .

= constraints
– NTXEq is the number of .

= constraints of the form T
.
= X

– NEq is the number of .
= constraints

We will prove termination by showing that both NCS and NEq reduce to 0.
The first part of the proof consists of reducing only ≲̇ constraints. Termina-

tion of C ⇒ S, is proved by a measure function that maps the constraint set
C to a tuple (NICS, NCCS, NCS). The following table shows that each step
decreases the tuple w.r.t. the lexicographic order:

NICS NCCS NCS
CS-DynL ≥ ≥ >
CS-DynR ≥ ≥ >
CS-Refl = = >
CS-Inst >
CS-Assoc >
CS-Arrow = >
CS-InstR >
CS-ArrowL ≥ >
CS-ArrowR ≥ >
CS-Eq = = >

Note that the number of ≲̇ constraints decreases to 0, leaving only .
= con-

straints in C.
The second part of the proof consists of reducing the remaining .

= constraints.
Termination of C ⇒ S, where now only .

= are in C, is proved by a measure
function that maps the constraint set C to a tuple (NVEq, NCEq, NTXEq,
NEq). The following table shows that each step decreases the tuple w.r.t. the
lexicographic order:

NVEq NCEq NTXEq NEq
Eq-Refl ≥ ≥ ≥ >
Eq-Arrow = >
Eq-VarR = = >
Eq-VarL >

Note that the number of .
= constraints decreases to 0, leaving C empty.
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