
A Typed Lambda Calculus with Gradual Intersection Types
Pedro Ângelo

pedro.angelo@fc.up.pt

LIACC, Departamento de Ciência de Computadores,

Faculdade de Ciências, Universidade do Porto,

rua do Campo Alegre s/n, 4169 - 007

Porto, Portugal

Mário Florido

amflorid@fc.up.pt

LIACC, Departamento de Ciência de Computadores,

Faculdade de Ciências, Universidade do Porto,

rua do Campo Alegre s/n, 4169 - 007

Porto, Portugal

ABSTRACT
Intersection types have the power to type expressions which are

all of many different types. Gradual types combine type check-

ing at both compile-time and run-time. Here we combine these

two approaches in a new typed calculus that harness both of their

strengths. We incorporate these two contributions in a single typed

calculus and define an operational semantics with type cast anno-

tations. We also prove several crucial properties of the type system,

namely that types are preserved during compilation and evaluation,

and that the refined criteria for gradual typing holds.

CCS CONCEPTS
• Theory of computation→ Type theory; Lambda calculus.

KEYWORDS
typed lambda calculus, intersection types, gradual typing

ACM Reference Format:
Pedro Ângelo and Mário Florido. 2022. A Typed Lambda Calculus with Grad-

ual Intersection Types. In Proceedings of ACM Conference (Conference’17).

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Types have been broadly used to verify program properties and

reduce or, in some cases, eliminate run-time errors. Programming

languages adopt either static typing or dynamic typing to prevent

programs from erroneous behaviour. Static typing is useful for

compile-time detection of type errors, while dynamic typing is done

at run-time and enables rapid software development. Integration of

static and dynamic typing has been a quite active subject of research

in the last years under the name of gradual typing [15, 16, 23, 24, 38–

40].

Intersection types, introduced by [17] and [35] in 1980, give a

type theoretical characterization of strong normalization. Several

other contributions followed, making intersection types a rich area

of study [7, 11, 19, 21, 29, 30, 41], also used in practice in program-

ming language design and implementation [8, 14, 20, 22, 36, 42].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Although the type inference problem for intersection types is not de-

cidable in general, it becomes decidable for finite rank fragments of

the general system [30], e.g. rank 2 intersection types [6, 21, 25, 26].

In this paper, we present a new gradually typed calculus with

rank 2 intersection types. To gradually shift type checking to run-

time, one needs to annotate lambda-abstractions with the dynamic

type, Dyn, which matches any type. Therefore, gradual type sys-

tems have an intrinsic need for explicit type annotations. Standard

gradual types enable to declare every occurrence of formal function

parameters as dynamically typed. Our system, using intersection

types, enables some occurrences of a formal parameter to be de-

clared as dynamically typed while others as statically typed. This

gives a new fine-grained definition of dynamicity which is only pos-

sible by the use of intersection types. Thus, the main contributions

of our paper are:

(1) a gradual intersection typed calculus, with rank 2 intersec-

tion types, which obeys the usual correctness criteria prop-

erties for gradual typing [40] (section 4);

(2) a compilation procedure, which inserts run-time casts into

the typed code (section 5);

(3) a type safe operational semantics for the whole calculus

(section 6).

Intersection types were originally designed as descriptive type

assignment systems à la Curry, where types are assigned to untyped

terms. Prescriptive versions of intersection type systems, support-

ing terms with type annotations in _-abstractions, are not trivial

[9, 21, 32, 36, 37, 43]. We faced similar problems in our typed calcu-

lus to add dynamic type annotations to individual occurrences of

formal parameters. As an example consider the following annotated

_-expression, where we need to instantiate 𝜎 in order to make the

expression well-typed: (_𝑥 : Dyn ∧ (Int → Int) . 𝑥 𝑥) (_𝑦 : 𝜎 . 𝑦).
This expression can be typed with Dyn, because _𝑥 : Dyn∧ (Int →
Int) . 𝑥 𝑥 has type Dyn ∧ (Int → Int) → Dyn and _𝑦 : 𝜎 . 𝑦

may have two types: (Int → Int) → Int → Int, with 𝜎 equal to

Int → Int, and Int → Int, with 𝜎 equal to Int. The question now is

how to choose the right type for 𝜎 . One might be tempted to use

the term _𝑦 : (Int → Int) ∧ Int . 𝑦, however that would result in

the expression being typed as either (Int → Int) ∧ Int → Int → Int

or (Int → Int) ∧ Int → Int, both of which are incorrect. Several

solutions have been presented to this problem [9, 32, 36, 37, 43].

Our type system follows the solution of [9], which makes use of

parallel terms of the form𝑀1 | . . . |𝑀𝑛 , where each𝑀𝑖 , for 𝑖 ∈ 1..𝑛,

is a term with a unique type assigned to it. In the example above,

the expression would now be annotated as (_𝑥 : Dyn ∧ (Int →
Int) . 𝑥 𝑥) (_𝑦 : Int → Int . 𝑦 | _𝑧 : Int . 𝑧), where the type of the
argument is ((Int → Int) → Int → Int) ∧ (Int → Int).

https://orcid.org/0000-0002-7849-195X
https://orcid.org/0000-0002-0574-7555
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Pedro Ângelo and Mário Florido

Although originally defined in a programming language con-

text, the logical meaning of the dynamic type is an interesting

question. This is especially relevant in the context of intersection

type systems, due to the apparent similarities with the 𝜔 type [18]:

the 𝜔 types any program, even ill-typed ones, whereas the Dyn

type relaxes the type system, allowing ill-typed programs to be

type-checked. Our work can be viewed as a first step towards a

proof-theoretical characterization of the dynamic type in the con-

text of intersection types. Note that rank 2 intersection types have

a decidable type inference problem [6, 21, 25, 26]. So, it should be

possible to adapt the type inference algorithm defined in [5] to

output the whole syntactic tree of annotated parallel terms, given

a partially annotated lambda term as input. This would also enable

the use of our calculus as an intermediate code in a gradually typed

programming language, avoiding the extra effort of programmers

to write several annotated copies of function arguments.

2 RELATEDWORK
In [4] we made a first attempt to define a gradual intersection type

system. However, this first system had not the type preservation

property, due to a naive definition of type annotations with in-

tersection types. So, our first concern was to redesign the system

using an existing intersection type system with proper support for

type annotations. Intersection-types à la Church [32] tackled this

challenge by dividing the calculus into two. Marked-terms encode

_-calculus terms and connect to proof-terms via a variable mark.

Proof-terms carry the logical information in the form of proof trees,

in which are included the type annotations. Although technically

sound and clean, there’s a rather large overhead in carrying two

distinct terms. Coupled with the indirection arising from the con-

nection betweenmarked and proof-terms, we find this approach too

cumbersome for our specific purpose. The issue is that integration

of any approach with gradual typing will mean adding a significant

level of extra complexity. Branching Types [43] encode different

derivations directly into types, by assigning to types a kind that

keeps track of the shapes of each derivation. Although an elegant

way of dealing with explicit annotations, we found later approaches

to allow a more viable integration with gradual typing. Another

typed language with intersection types is Forsythe [36]. We did

not consider this approach because some terms in this system lack

correct typings when fully annotated, e.g. there is no annotated

version of (_𝑥.(_𝑦.𝑥)) with type (𝜏 → 𝜏 → 𝜏) ∧ (𝜌 → 𝜌 → 𝜌).
A Typed Lambda Calculus with Intersection Types [9], introduces

parallel terms, where each component is annotated, resulting in

the typing of the parallel term with an intersection type. Besides

allowing type annotations, parallel terms also make easier the defi-

nition of dynamic type checking of terms typed by an intersection

type. Thus, due mainly to this simplicity and elegant design, we

chose [9] as the basis upon which we built our system.

There is also previous work dealing with gradual typing in the

presence of intersection types following a set-theoretical approach

based on semantic subtyping [12, 13]. By using principles of abstract

interpretation, [12] introduces a semantic definition of consistent

subtyping. This work does not consider a precision relation, which

precludes important properties, such as gradual guarantee [40].

Type inference was not approached in this work, but in [13] the

authors refine the work of [12], also introducing a type inference

algorithm. However, due to the unrestricted rank of intersection

types, this algorithm is not complete. In our paper, we restrict

gradual intersection types to rank-2, for which there is a complete

type inference algorithm [5]. We are now working on an extension

of the algorithm described in [5] to the prescriptive type system

described here.

Finally, there are contributions on gradual typing with intersec-

tion types using contracts which are also related but intrinsically

different from our work. In [27, 44] contracts are implemented

as a library, which differs from our approach which relies on the

definition of a gradual type system. Furthermore, these contribu-

tions employ intersections as a conjunction operator of contracts,

whereas we define an intersection type system and a type safe

calculus. More recently [34] uses intersection types in the same

context, but differently from our work. The main differences are:

intersections in [34] are between refinements, limiting the set of

types in intersections, and we deal with general intersection types.

Besides this [34] is based in a different calculus [33] using strong

pairs instead of parallel terms and a non-deterministic operational

semantics.

3 INTERSECTION TYPES AND SYNTAX
In the original system [17], intersections are defined as associative,

commutative and idempotent. There have been several succeeding

contributions that make use of non-idempotent intersections, usu-

ally to obtain quantitative information through type derivations

[1, 3, 10, 28]. Here we restrict even more the algebraic properties of

intersections, following the definition of [9] of a sequence 𝜏1∧. . .∧𝜏𝑛
as an ordered list of base types or arrow types. Therefore, intersec-

tions are non-commutative, i.e. the positions of instances cannot

be swapped, e.g. 𝜏 ∧ 𝜌 ≠ 𝜌 ∧ 𝜏 , and non-idempotent, i.e. the dupli-

cation or collapsing of instances of the same type is not allowed,

e.g. 𝜏 ∧ 𝜏 ≠ 𝜏 .

Let 𝜏 and 𝜌 (possibly with subscripts) range over monotypes

(where the top level constructor is not the intersection type connec-

tive), and 𝜎 and 𝜐 (possibly with subscripts) range over sequences.

Since we allow sequences of size one, 𝜎 and 𝜐 also range over mono-

types. 𝐵 ranges over base types, such as Int and Bool, and Dyn is

the dynamic type. We define the language of types in the following

grammar:

Monotypes 𝜏 ::= 𝐵 | Dyn | 𝜎 → 𝜏

Sequence Types 𝜎 ::= 𝜏1 ∧ . . . ∧ 𝜏𝑛 (with 𝑛 ≥ 1)

Given a sequence 𝜏1 ∧ . . . ∧ 𝜏𝑛 , each 𝜏𝑖 is called an element of

the sequence. When we say type we refer to either monotypes

or sequences. Following the original definition in [17], sequences

can only appear in the left-hand side (domain) of the arrow type

constructor. Therefore, the shape of a (valid) arrow type is 𝜏1∧ . . .∧
𝜏𝑛 → 𝜌 , with 𝑛 ≥ 1. The intersection type connective ∧ has higher

precedence than the arrow type constructor →, and → associates

to the right. We introduce the following relation: 𝜏 ∈ 𝜏1 ∧ . . . ∧ 𝜏𝑛
means that 𝜏 ≡ 𝜏𝑖 for some 𝑖 ∈ 1..𝑛. We say a type is static if it

contains no Dyn type components.

A Typed Lambda Calculus with Gradual Intersection Types Conference’17, July 2017, Washington, DC, USA

3.1 Syntax
Our language is an explicitly annotated lambda calculus with term

constants, i.e. integers and booleans. We include parallel terms

from [9], which are annotated by sequences, and form one of the

key features in our system. Similarly to intersection, the parallel

operator is non-commutative and non-idempotent: 𝑀𝜏 | 𝑁 𝜌 ≠

𝑁 𝜌 |𝑀𝜏
and𝑀𝜏 |𝑀𝜏 ≠ 𝑀𝜏

. Let𝑀 and 𝑁 (possibly with subscripts)

range over typed terms, 𝑥 , 𝑦 and 𝑧 (possibly with subscripts) range

over term variables, 𝑘 range over term constants, such as integers

and booleans, and 𝑖 , 𝑗 ,𝑚 and 𝑛 range over positive integers. We

use Π and Υ (possibly with subscripts) to range over parallel terms

𝑀
𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛 , where 𝑛 ≥ 1, and call each𝑀

𝜏𝑖
𝑖

a component of Π𝜎
.

We extend the language with built-in addition; the other arithmetic

operations can be defined similarly. We define the syntax of type-

annotated terms, and supporting definitions [9], below:

Monotyped Terms 𝑀 ::= 𝑘𝐵 | 𝑐𝜏𝑖 (𝑥) | _𝑥 : 𝜎 . 𝑀𝜏 |
𝑀𝜏 Π𝜎 | 𝑀𝜏 +𝑀𝜏

Parallel Terms Π ::= (𝑀𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛) 𝑛 ≥ 1

Coercions [9], of the form 𝑐𝜏
𝑖
(𝑥), annotate a term variable with a

monotype. Considering the example _𝑥 : ((Int → Int) → Int →
Int) ∧ (Int → Int) . 𝑥 𝑥 , we have that 𝑥 is typed by the sequence

annotated in the lambda abstraction. However, the type used in the

typing derivation for each occurrence of 𝑥 will be an element of that

sequence. Therefore, we annotate the term as follows: _𝑥 : ((Int →
Int) → Int → Int)∧(Int → Int) . 𝑐 (Int→Int)→Int→Int

𝑖
(𝑥) 𝑐 Int→Int

𝑗
(𝑥)

Definition 3.1 (Coercion). Given a variable 𝑥 , a coercion 𝑐𝜏
𝑖
(𝑥)

assigns type 𝜏 and flow mark 𝑖 to 𝑥 (flow marks are not relevant

now, and will be explained in subsection 5.1).

Definition 3.2 (Rank). The rank of a type is defined by the fol-

lowing rules:

• rank(𝜏) = 0, if 𝜏 is a simple type i.e. no occurrences of the

intersection operator;

• rank(𝜎 → 𝜏) = max(1 + rank(𝜎), rank(𝜏)), if rank(𝜎) + rank(𝜏)

> 0;

• rank(𝜏1 ∧ . . . ∧ 𝜏𝑛) = max(1, rank(𝜏1), . . . , rank(𝜏𝑛)) for 𝑛 ≥ 2.

Given a term𝑀𝜏
, 𝑓 𝑣 (𝑀𝜏) denotes the set of free variables in𝑀𝜏

.

We say a term is static if it contains only static type annotations.

According to the definition of rank restriction [26, 31], a rank n

intersection type can have no intersection type connective ∧ to the

left of n or more arrow type constructors→. We restrict types in

our system to be only of up to rank 2, e.g. ((𝜏1 → 𝜌1) ∧𝜏1 → 𝜌1) ∧
((𝜏2 → 𝜌2) ∧ 𝜏2 → 𝜌2) is a valid type; (((𝜏 → 𝜌) ∧ 𝜏) → 𝜌) → 𝜏

is not. In a _-abstraction _𝑥 : 𝜎 . 𝑀𝜏
, type 𝜎 is a rank 1 or lower

type.

Definition 3.3 (Typing Context). A typing context is a finite set,

represented by {𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛}, of type bindings between type
variables and rank 1 𝜎 types. We use Γ (possibly with subscripts) to

range over typing contexts, and write ∅ for an empty context. We

write 𝑥 : 𝜎 for the context {𝑥 : 𝜎} and abbreviate 𝑥 : 𝜎 ≡ {𝑥 : 𝜎};
and write Γ1, Γ2 for the union of contexts Γ1 and Γ2, assuming Γ1
and Γ2 are disjoint, and abreviate Γ1, Γ2 ≡ Γ1 ∪ Γ2.

Definition 3.4 (Joining Typing Contexts). Let Γ1 and Γ2 be two
typing contexts. Γ1 ∧ Γ2 is a typing context, where 𝑥 : 𝜎 ∈ Γ1 ∧ Γ2 if
and only if 𝜎 is defined as follows:

𝜎 =

𝜎1 ∧ 𝜎2, 𝑖 𝑓 𝑥 : 𝜎1 ∈ Γ1 𝑎𝑛𝑑 𝑥 : 𝜎2 ∈ Γ2

𝜎1, 𝑖 𝑓 𝑥 : 𝜎1 ∈ Γ1 𝑎𝑛𝑑 ¬∃𝜎2 . 𝑥 : 𝜎2 ∈ Γ2

𝜎2, 𝑖 𝑓 ¬∃𝜎1 . 𝑥 : 𝜎1 ∈ Γ1 𝑎𝑛𝑑 𝑥 : 𝜎2 ∈ Γ2

4 GRADUAL INTERSECTION TYPE SYSTEM
Before defining our gradual intersection type system, we present

some auxiliary definitions.

4.1 Consistency and Precision
The consistency relation ∼ [15, 38] forms, along with the Dyn type,

the key cornerstones of gradual typing. It allows the comparison of

gradual types, where two types are consistent if they are equal in the

parts where they are static. However, we must adapt consistency to

support non-idempotent and non-commutative intersection types.

Due to our interpretation of intersection types, which consists in

assigning various types to an expression, we consider the Dyn

type incompatible with sequences. Thus, we restrict Dyn to be

consistent only with rank 0 monotypes 𝜏 , and so sequences can

only be consistent with other sequences. With this design choice,

our system stays simple while still keeping the desired expressive

power.

Definition 4.1 (Consistency). Given two types 𝜎 and 𝜐, such that

𝑟𝑎𝑛𝑘 (𝜎) = 𝑟𝑎𝑛𝑘 (𝜐), the consistency relation between 𝜎 and 𝜐 is

defined by the following set of axioms and rules:

𝜎 ∼ 𝜎 Dyn ∼ 𝜏 𝜏 ∼ Dyn

𝜎1 ∼ 𝜎2 𝜏1 ∼ 𝜏2

𝜎1 → 𝜏1 ∼ 𝜎2 → 𝜏2

𝜏1 ∼ 𝜌1 . . . 𝜏𝑛 ∼ 𝜌𝑛

𝜏1 ∧ . . . ∧ 𝜏𝑛 ∼ 𝜌1 ∧ . . . ∧ 𝜌𝑛

We also require a pattern matching relation that retrieves mono-

types from dynamically typed functions in applications, or from

dynamically typed arguments in additions.

Definition 4.2 (Pattern Matching). The definition follows:

Dyn ▷ Dyn → Dyn 𝜎 → 𝜏 ▷ 𝜎 → 𝜏

Dyn ▷ 𝐵 𝐵 ▷ 𝐵

The precision relation (definition 4.3) between two types, written

as 𝜎 ⊑ 𝜐, holds if type 𝜎 is more unknown than 𝜐. Therefore, the

Dyn type is less precise (⊑) than any other monotype 𝜏 . We lift the

precision relation to contexts (definition 4.4) and terms (definition

4.5).

Definition 4.3 (Precision). Given two types 𝜎 and 𝜐, such that

𝑟𝑎𝑛𝑘 (𝜎) = 𝑟𝑎𝑛𝑘 (𝜐), the precision relation between 𝜎 and 𝜐 is de-

fined by the following set of axioms and rules:

𝜎 ⊑ 𝜎 Dyn ⊑ 𝜏

𝜎1 ⊑ 𝜎2 𝜏1 ⊑ 𝜏2

𝜎1 → 𝜏1 ⊑ 𝜎2 → 𝜏2

𝜏1 ⊑ 𝜌1 . . . 𝜏𝑛 ⊑ 𝜌𝑛

𝜏1 ∧ . . . ∧ 𝜏𝑛 ⊑ 𝜌1 ∧ . . . ∧ 𝜌𝑛

Conference’17, July 2017, Washington, DC, USA Pedro Ângelo and Mário Florido

Definition 4.4 (Precision on Contexts). Precision between two

contexts Γ1 and Γ2, where both have type bindings for exactly the

same variables, is defined as point-wise precision between bound

types: Γ1, 𝑥 : 𝜎 ⊑ Γ2, 𝑥 : 𝜐 ⇐⇒ Γ1 ⊑ Γ2 and 𝜎 ⊑ 𝜐; and ∅ ⊑ ∅.

Definition 4.5 (Precision on Terms). Precision between two terms,

Π𝜎 ⊑ Υ𝜐 , means that Π𝜎
has less precise type annotations than Υ𝜐 :

[P-Con]

𝑘𝐵 ⊑ 𝑘𝐵
[P-Var]

𝜌 ⊑ 𝜏

𝑐
𝜌

𝑖
(𝑥) ⊑ 𝑐𝜏𝑖 (𝑥)

[P-Abs]

𝜐 ⊑ 𝜎 𝑁 𝜌 ⊑ 𝑀𝜏

_𝑥 : 𝜐 . 𝑁 𝜌 ⊑ _𝑥 : 𝜎 . 𝑀𝜏

[P-App]

𝑁 𝜌 ⊑ 𝑀𝜏 Υ𝜐 ⊑ Π𝜎

𝑁 𝜌 Υ𝜐 ⊑ 𝑀𝜏 Π𝜎

[P-Add]

𝑁
𝜌1
1

⊑ 𝑀
𝜏1
1

𝑁
𝜌2
2

⊑ 𝑀
𝜏2
2

𝑁
𝜌1
1

+ 𝑁
𝜌2
2

⊑ 𝑀
𝜏1
1

+𝑀
𝜏2
2

[P-Par]

𝑁
𝜌1
1

⊑ 𝑀
𝜏1
1

. . . 𝑁
𝜌𝑛
𝑛 ⊑ 𝑀

𝜏𝑛
𝑛

𝑁
𝜌1
1

| . . . | 𝑁 𝜌𝑛
𝑛 ⊑ 𝑀

𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛

Proposition 4.6 (Monotonicity of Γ1 ∧ Γ2 w.r.t. Precision).

If Γ′
1
⊑ Γ1 and Γ′

2
⊑ Γ2 then Γ′

1
∧ Γ′

2
⊑ Γ1 ∧ Γ2.

4.2 Type System
Components of a parallel term are differently typed versions of the

same term, thus equivalent modulo 𝛼-conversion. The typed calcu-

lus of [9] enforces this restriction by synchronously typing the com-

ponents of a parallel term. In the parallel application𝑀
𝜏1
1
Π𝜎1
1

|𝑀𝜏2
2
Π𝜎2
2

both 𝑀
𝜏1
1

and 𝑀
𝜏2
2

are identical terms with different type annota-

tions, and the same is true for Π𝜎1
1

and Π𝜎2
2
. Type checking is simply

a matter of checking𝑀
𝜏1
1

| 𝑀𝜏2
2

and then checking Π𝜎1
1

| Π𝜎2
2
, rather

than checking individually each component, 𝑀
𝜏1
1

Π𝜎1
1

and then

𝑀
𝜏2
2

Π𝜎2
2
. With this approach, the generating rules are able to en-

sure that components of the parallel term are equivalent modulo

𝛼-conversion.

This restriction cannot be enforced in our system, because it is

not preserved by reduction. In fact, equivalencemodulo𝛼-conversion

of components must be relaxed because during term reduction some

components may gather more run-time checks than others. Our

type system provides this necessary flexibility. We present the ⊲⊳

(variant) relation between terms in definition 4.7, and expand it

in section 5 to account for run-time checks and errors. In essence,

Π𝜎 ⊲⊳ Υ𝜐 (Π𝜎
is a variant term of Υ𝜐) holds if Π𝜎

and Υ𝜐 have

the same shape of their syntactic trees, while disregarding extra

run-time checks and errors. We assume terms are equivalent up

to 𝛼-reducion, in order to prevent variable capture. For example,

_𝑥 . _𝑦 . 𝑥 ⊲⊳ _𝑧 . _𝑤 . 𝑧 holds, but _𝑥 . _𝑦 . 𝑥 ̸⊲⊳ _𝑧 . _𝑤 . 𝑤 .

Definition 4.7 (Variant Terms ⊲⊳). The ⊲⊳ relation is defined by the

following rules:

[V-Con]

𝑘𝐵 ⊲⊳ 𝑘𝐵
[V-Var]

𝑐𝜏𝑖 (𝑥) ⊲⊳ 𝑐
𝜌

𝑖
(𝑥)

[V-Abs]

𝑀𝜏 ⊲⊳ 𝑁 𝜌

_𝑥 : 𝜎 . 𝑀𝜏 ⊲⊳ _𝑥 : 𝜐 . 𝑁 𝜌

[V-App]

𝑀𝜏 ⊲⊳ 𝑁 𝜌 Π𝜎 ⊲⊳ Υ𝜐

𝑀𝜏 Π𝜎 ⊲⊳ 𝑁 𝜌 Υ𝜐

[V-Add]

𝑀
𝜏1
1

⊲⊳ 𝑁
𝜌1
1

𝑀
𝜏2
2

⊲⊳ 𝑁
𝜌2
2

𝑀
𝜏1
1

+𝑀
𝜏2
2

⊲⊳ 𝑁
𝜌1
1

+ 𝑁
𝜌2
2

[V-Par]

𝑀
𝜏1
1

⊲⊳ 𝑁
𝜌1
1

. . . 𝑀
𝜏𝑛
𝑛 ⊲⊳ 𝑁

𝜌𝑛
𝑛

𝑀
𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛 ⊲⊳ 𝑁

𝜌1
1

| . . . | 𝑁 𝜌𝑛
𝑛

Definition 4.8 (Variant Set). We define a variant set as follows:

⊲⊳ (𝑀𝜏1
1
, . . . , 𝑀

𝜏𝑛
𝑛) 𝑑𝑒𝑓

= ∀𝑖 ∈ 1..𝑛, 𝑗 ∈ 1..𝑛 . 𝑀
𝜏𝑖
𝑖

⊲⊳ 𝑀
𝜏 𝑗
𝑗

We define the gradual type system in figure 2, and its counterpart

static type system in figure 1. The only difference between both

type systems is that in the static type system, due to the lack of

the Dyn type, the consistency ∼ and pattern matching ▷ relations

reduce to equality. This difference manifests only in the formulation

of rules [T-App] and [T-Add]. Hence, the remaining rules ([T-Con],

[T-Var], [T-AbsI], [T-AbsK] and [T-Par]) are obtained from figure

1.

Although each term is annotated with its type, we may omit

type annotations if they are trivially reconstructed, e.g. _𝑥 : 𝜎 . 𝑀𝜏

instead of (_𝑥 : 𝜎 . 𝑀𝜏)𝜎→𝜏
. We impose the following restric-

tion on lambda abstractions. If 𝑥 occurs free in 𝑀𝜌
, then the oc-

currences of 𝑥 in _𝑥 : 𝜎 . 𝑀𝜌
are in a one-to-one correspon-

dence with the elements of 𝜎 . Thus, for each element of the ab-

straction’s annotation, there is a single variable in the body that

is typed by that element, and vice-versa. Furthermore, the or-

der of variables in the body matches the order of the related el-

ements in the type annotation. Therefore, lambda abstractions,

whose bound variable occurs in the body, have the following form:

_𝑥 : 𝜏1 ∧ . . .∧𝜏𝑛 𝑐
𝜏1
0
(𝑥) . . . 𝑐

𝜏𝑛
0
(𝑥) Also, according to rule

[T-App], the condition𝜐 ∼ 𝜎 ensures the order of components in the

argument parallel term matches the domain type of the function.

Therefore, applications with parallel terms as arguments are of the

form:𝑀𝜏1∧...∧𝜏𝑛→𝜏 (𝑁 𝜌1
1

| . . . | 𝑁 𝜌𝑛
𝑛), assumming 𝜐 = 𝜌1∧ . . .∧𝜌𝑛

and 𝜎 = 𝜏1 ∧ . . . ∧ 𝜏𝑛 . This restriction ensures the system benefits

from important properties, which will be introduced in section 5.

To enforce this restriction, we rely on type system rules and

the non-commutativity and non-idempotence of intersection types.

Rule [T-Var] inserts into the context the instances assigned to each

variable. Then, rules [T-App], [T-Add] and [T-Par] join the con-

texts, per definition 3.4, such that types bound to the same variable

are joined in a sequence ordered w.r.t. the order of ocurrences of

the variable. Finally, rule [T-AbsI] ensures the type bound to the

variable in the context equals the type annotation in the abstrac-

tion, ensuring the one-to-one correspondence. The exception is

A Typed Lambda Calculus with Gradual Intersection Types Conference’17, July 2017, Washington, DC, USA

[T-Con]

k is a constant of base type B

∅ ⊢∧ 𝑘𝐵 : 𝐵
[T-Var]

𝑥 : 𝜏 ⊢∧ 𝑐𝜏𝑖 (𝑥) : 𝜏
[T-AbsI]

Γ, 𝑥 : 𝜎 ⊢∧ 𝑀𝜏
: 𝜏

Γ ⊢∧ _𝑥 : 𝜎 . 𝑀𝜏
: 𝜎 → 𝜏

𝑥 ∈ 𝑓 𝑣 (𝑀𝜏)

[T-AbsK]

Γ ⊢∧ 𝑀𝜏
: 𝜏

Γ ⊢∧ _𝑥 : 𝜎 . 𝑀𝜏
: 𝜎 → 𝜏

𝑥 ∉ 𝑓 𝑣 (𝑀𝜏) [T-App]

Γ1 ⊢∧ 𝑀𝜎→𝜏
: 𝜎 → 𝜏

Γ2 ⊢∧ Π𝜎
: 𝜎

Γ1 ∧ Γ2 ⊢∧ 𝑀𝜎→𝜏 Π𝜎
: 𝜏

[T-Add]

Γ1 ⊢∧ 𝑀 Int
: Int

Γ2 ⊢∧ 𝑁 Int
: Int

Γ1 ∧ Γ2 ⊢∧ 𝑀 Int + 𝑁 Int
: Int

[T-Par]

Γ1 ⊢∧ 𝑀
𝜏1
1

: 𝜏1 . . . Γ𝑛 ⊢∧ 𝑀
𝜏𝑛
𝑛 : 𝜏𝑛 ⊲⊳ (𝑀𝜏1

1
, . . . , 𝑀

𝜏𝑛
𝑛)

Γ1 ∧ . . . ∧ Γ𝑛 ⊢∧ 𝑀
𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛 : 𝜏1 ∧ . . . ∧ 𝜏𝑛

∀𝑖 . 𝑟𝑎𝑛𝑘 (𝜏𝑖) = 0

Figure 1: Static Intersection Type System (Γ ⊢∧ Π : 𝜎)

Static Intersection Type System (Γ ⊢∧ Π : 𝜎) rules and

[T-App]

Γ1 ⊢∧𝐺 𝑀𝜌
: 𝜌 𝜌 ▷ 𝜎 → 𝜏

Γ2 ⊢∧𝐺 Π𝜐
: 𝜐 𝜐 ∼ 𝜎

Γ1 ∧ Γ2 ⊢∧𝐺 𝑀𝜌 Π𝜐
: 𝜏

[T-Add]

Γ1 ⊢∧𝐺 𝑀𝜏
: 𝜏 𝜏 ▷ Int

Γ2 ⊢∧𝐺 𝑁 𝜌
: 𝜌 𝜌 ▷ Int

Γ1 ∧ Γ2 ⊢∧𝐺 𝑀𝜏 + 𝑁 𝜌
: Int

Figure 2: Gradual Intersection Type System (Γ ⊢∧𝐺 Π𝜎
: 𝜎)

when the bound variable does not occur in the body of a lambda

abstraction, in which case we apply instead rule [T-AbsK].

Proposition 4.9. If Γ ⊢∧𝐺 _𝑥 : 𝜏1∧ . . .∧𝜏𝑛 . 𝑀𝜌
: 𝜏1∧ . . .∧𝜏𝑛 →

𝜌 , and 𝑥 ∈ 𝑓 𝑣 (𝑀𝜌), then the number of free occurrences of 𝑥 in𝑀𝜌

equals 𝑛, and these occurrences are typed with 𝜏1, . . . , 𝜏𝑛 , considering

an order from left to right.

Rule [T-App] uses the standard relations from gradual typing [15],

the ▷ and ∼ relations. We also introduce a new rule [T-Par] which

individually types terms in a parallel term. Note that components of

a parallel termmust share the same term structure (⊲⊳) (this replaces

the Local Renaming rule from [9]). Since components share the

same free variables, they are typed using a unique context Γ.

Example 4.10. We illustrate these concepts in the following exam-

ple. We set flow marks to 0 since they don’t influence type checking.

Consider the following expression

(_𝑥 : Dyn ∧ Dyn . 𝑐
Dyn

0
(𝑥) 𝑐Dyn

0
(𝑥))

(_𝑦 : Int
2 . 𝑐 Int

2

0
(𝑦) | _𝑧 : Int . 𝑐 Int

0
(𝑧))

where we abbreviate as follows:Dyn
2
denotes the typeDyn → Dyn;

𝐼2 denotes the type Int → Int; 𝐼4 denotes the type (Int → Int) →
Int → Int. We have the following derivations.

Derivation 𝐷1:

[T-Var] 𝑥 : Dyn ⊢∧𝐺 𝑐
Dyn

0
(𝑥) : Dyn

𝑑𝑒 𝑓 .4.2 Dyn ▷ Dyn → Dyn

𝑑𝑒 𝑓 .4.1 Dyn ∼ Dyn

[T-App] 𝑥 : Dyn ∧ Dyn ⊢∧𝐺 𝑐
Dyn

0
(𝑥) 𝑐Dyn

0
(𝑥) : Dyn

[T-AbsI] ∅ ⊢∧𝐺 _𝑥 : Dyn ∧ Dyn .

𝑐
Dyn

0
(𝑥) 𝑐Dyn

0
(𝑥) : Dyn ∧ Dyn → Dyn

Derivation 𝐷2:

[T-Var] 𝑦 : Int → Int ⊢∧𝐺 𝑐 Int→Int

0
(𝑦) : Int → Int

[T-AbsI] ∅ ⊢∧𝐺 _𝑦 : Int → Int . 𝑐 Int→Int

0
(𝑡) : 𝐼4

Derivation 𝐷3:

[T-Var] 𝑧 : Int ⊢∧𝐺 𝑐 Int
0

(𝑧) : Int

[T-AbsI] ∅ ⊢∧𝐺 _𝑧 : Int . 𝑐 Int
0

(𝑧) : Int → Int

Final derivation: by𝐷2 and𝐷3 and since _𝑦 : Int → Int . 𝑐 Int→Int

0
(𝑦)

⊲⊳ _𝑧 : Int . 𝑐 Int
0

(𝑧) holds, and finally by 𝐷1:

[T-Par] ∅ ⊢∧𝐺 _𝑦 : Int → Int . 𝑐 Int→Int

0
(𝑦) |

_𝑧 : Int . 𝑐 Int
0

(𝑧)) : Int4 ∧ Int
2

𝑑𝑒 𝑓 .4.2 Dyn ∧ Dyn → Dyn ▷ Dyn ∧ Dyn → Dyn

𝑑𝑒 𝑓 .4.1 (Int4 ∧ (Int → Int) ∼ Dyn ∧ Dyn

[T-App] ∅ ⊢∧𝐺 (_𝑥 : Dyn ∧ Dyn . 𝑐
Dyn

0
(𝑥) 𝑐Dyn

0
(𝑥))

(_𝑦 : Int
2 . 𝑐 Int

2

0
(𝑦) | _𝑧 : Int . 𝑐 Int

0
(𝑧)) : Dyn

We show the typed calculus has the following properties, includ-

ing those from [40]:

Proposition 4.11 (Seqence Types and Parallel Terms). If

Γ ⊢∧𝐺 Π𝜎
: 𝜎 and 𝜎 ≡ 𝜏1 ∧ . . .∧𝜏𝑛 , with 𝑛 > 1, then Π𝜎

is a parallel

term, namely Π𝜎 ≡ 𝑀
𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛 for some𝑀

𝜏1
1
, . . . , 𝑀

𝜏𝑛
𝑛 .

Proposition 4.12 (Basic Properties). If Γ ⊢∧𝐺 𝑀
𝜏1
1

| . . . |𝑀𝜏𝑛
𝑛 :

𝜏1 ∧ . . . ∧ 𝜏𝑛 then:

(1) for any 𝑥 : 𝜎 ∈ Γ and for any𝑀
𝜏𝑖
𝑖

(1 ≤ 𝑖 ≤ 𝑛), each occurrence

of 𝑥 in𝑀
𝜏𝑖
𝑖

is the argument of a coercion of the shape 𝑐𝜏
𝑗
where

𝜏 ∈ 𝜎 ;

Conference’17, July 2017, Washington, DC, USA Pedro Ângelo and Mário Florido

(2) for any term of the shape 𝑁
𝜌1
1

| . . . | 𝑁 𝜌𝑚
𝑚 , where for all 𝑖

(1 ≤ 𝑖 ≤ 𝑚) there exists 𝑗 (1 ≤ 𝑗 ≤ 𝑛) such that 𝑁
𝜌𝑖
𝑖

≡ 𝑀
𝜏 𝑗
𝑗
,

the judgement Γ ⊢∧𝐺 𝑁
𝜌1
1

| . . . | 𝑁 𝜌𝑚
𝑚 : 𝜌1 ∧ . . . ∧ 𝜌𝑚 is

derivable. If we can derive a parallel term, we can also derive

a permutation of it, a shorter parallel term and a parallel term

with copies of some components.

Lemma 4.13 (Inversion Lemma).

(1) Rule [T-Con]. If ∅ ⊢∧𝐺 𝑘𝐵 : 𝐵 then 𝑘 is a constant of base type

𝐵.

(2) Rule [T-Var]. We have that 𝑥 : 𝜏 ⊢∧𝐺 𝑐𝜏
𝑖
(𝑥) : 𝜏 holds.

(3) Rule [T-AbsI]. Assuming 𝑥 ∈ 𝑓 𝑣 (𝑀𝜏), if Γ ⊢∧𝐺 _𝑥 : 𝜎 . 𝑀𝜏
:

𝜎 → 𝜏 then Γ, 𝑥 : 𝜎 ⊢∧𝐺 𝑀𝜏
: 𝜏 .

(4) Rule [T-AbsK]. Assuming 𝑥 ∉ 𝑓 𝑣 (𝑀𝜏), if Γ ⊢∧𝐺 _𝑥 : 𝜎 . 𝑀𝜏
:

𝜎 → 𝜏 then Γ ⊢∧𝐺 𝑀𝜏
: 𝜏 .

(5) Rule [T-App]. If Γ ⊢∧𝐺 𝑀𝜌 Π𝜐
: 𝜏 then typing context Γ can be

divided into Γ1 and Γ2 such that Γ1∧Γ2 = Γ and Γ1 ⊢∧𝐺 𝑀𝜌
: 𝜌 ,

𝜌 ▷ 𝜎 → 𝜏 , Γ2 ⊢∧𝐺 Π𝜐
: 𝜐 and 𝜐 ∼ 𝜎 .

(6) Rule [T-Add]. If Γ ⊢∧𝐺 𝑀𝜏 + 𝑁 𝜌
: Int then typing context

Γ can be divided into Γ1 and Γ2 such that Γ1 ∧ Γ2 = Γ and

Γ1 ⊢∧𝐺 𝑀𝜏
: 𝜏 and 𝜏 ▷ Int and Γ2 ⊢∧𝐺 𝑁 𝜌

: 𝜌 and 𝜌 ▷ Int.
(7) Rule [T-Par]. If Γ ⊢∧𝐺 𝑀

𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛 : 𝜏1 ∧ . . . ∧ 𝜏𝑛 then

typing context Γ can be divided into Γ1, . . . , Γ𝑛 such that Γ1 ∧
. . .∧Γ𝑛 = Γ and Γ1 ⊢∧𝐺 𝑀

𝜏1
1

: 𝜏1 and . . . and Γ𝑛 ⊢∧𝐺 𝑀
𝜏𝑛
𝑛 : 𝜏𝑛

and ⊲⊳ (𝑀𝜏1
1
, . . . , 𝑀

𝜏𝑛
𝑛).

Proof. By induction on the length of the derivation tree of

Γ ⊢∧𝐺 Π𝜎
: 𝜎 . □

Theorem 4.14 (Conservative Extension of Type System). If

Π𝜎
is static and 𝜎 is a static type, then Γ ⊢∧ Π𝜎

: 𝜎 ⇐⇒ Γ ⊢∧𝐺
Π𝜎

: 𝜎 .

Proof. By induction on the length of the derivation tree of

Γ ⊢∧ Π𝜎
: 𝜎 and Γ ⊢∧𝐺 Π𝜎

: 𝜎 . □

Theorem 4.15 (Monotonicity w.r.t. Precision). If Γ ⊢∧𝐺 Π𝜎
:

𝜎 and Υ𝜐 ⊑ Π𝜎
then ∃Γ′ such that Γ′ ⊑ Γ and Γ′ ⊢∧𝐺 Υ𝜐 : 𝜐 and

𝜐 ⊑ 𝜎 .

Proof. By induction on the length of the derivation tree of

Γ ⊢∧𝐺 Π𝜎
: 𝜎 . □

5 CAST CALCULUS
In gradual typing, type verification is also delayed to run-time,

thus our language must be compiled into a calculus that supports

run-time verification. This target language is widely known as the

Cast Calculus [15], compiled from the typed source language by

adding run-time type checks called casts. We define the syntax of

this calculus for our system below and its typing rules in figure 3:

Monotyped Terms 𝑀 ::= . . . | 𝑀𝜏
: 𝜏 ⇒ 𝜏 | wrong𝜏

Parallel Terms Π ::= . . . | wrong𝜎

Notice that new terms are added to the syntax of section 3. The

run-time verification, in the form of the cast𝑀𝜏
: 𝜏 ⇒ 𝜌 , checks if

a term𝑀𝜏
of source type 𝜏 can be treated as having target type 𝜌 .

The term wrong
𝜎
signals a run-time error, being considered either

a monotyped term or a parallel term depending on the type annota-

tion. These terms are adapted from [15], and serve the same purpose.

Regarding the type system, new rules for application [T-App] and

addition [T-Add] are introduced, as well as for casts [T-Cast] and

errors [T-Wrong]. Since casts make explicit the consistency and

pattern matching checks, these are removed from rules [T-App]

and [T-Add]. The remaining rules ([T-Con], [T-Var], [T-AbsI], [T-

AbsK] and [T-Par]) are obtained from figure 2. We also expand the

definition of ⊑ (precision from definition 4.5) and ⊲⊳ (variant terms

from definition 4.7) on terms, to include casts and errors:

Definition 5.1 (Precision on Cast Calculus). We redefine ⊑ on

terms with the rules from definition 4.5 and the following rules:

[P-Cast]

𝑁 𝜌1 ⊑ 𝑀𝜏1 𝜌1 ⊑ 𝜏1 𝜌2 ⊑ 𝜏2

𝑁 𝜌1
: 𝜌1 ⇒ 𝜌2 ⊑ 𝑀𝜏1

: 𝜏1 ⇒ 𝜏2

[P-Wrong]

𝜐 ⊑ 𝜎

Υ𝜐 ⊑ wrong
𝜎

[P-CastL]

𝑁 𝜌1 ⊑ 𝑀𝜏

𝜌1 ⊑ 𝜏 𝜌2 ⊑ 𝜏

𝑁 𝜌1
: 𝜌1 ⇒ 𝜌2 ⊑ 𝑀𝜏

[P-CastR]

𝑁 𝜌 ⊑ 𝑀𝜏1

𝜌 ⊑ 𝜏1 𝜌 ⊑ 𝜏2

𝑁 𝜌 ⊑ 𝑀𝜏1
: 𝜏1 ⇒ 𝜏2

Definition 5.2 (Variant Terms on Cast Calculus). We redefine ⊲⊳

on terms with the rules from definition 4.7 and the following rules:

[V-Cast]

𝑀𝜏1 ⊲⊳ 𝑁 𝜌1

𝑀𝜏1
: 𝜏1 ⇒ 𝜏2 ⊲⊳ 𝑁

𝜌1
: 𝜌1 ⇒ 𝜌2

[V-WrongL]

𝜎 = 𝜏1 ∧ . . . ∧ 𝜏𝑛
𝜐 = 𝜌1 ∧ . . . ∧ 𝜌𝑛

wrong
𝜎 ⊲⊳ Υ𝜐

[V-WrongR]

𝜎 = 𝜏1 ∧ . . . ∧ 𝜏𝑛
𝜐 = 𝜌1 ∧ . . . ∧ 𝜌𝑛

Π𝜎 ⊲⊳ wrong𝜐

[V-CastL]

𝑀𝜏1 ⊲⊳ 𝑁 𝜌

𝑀𝜏1
: 𝜏1 ⇒ 𝜏2 ⊲⊳ 𝑁

𝜌

[V-CastR]

𝑀𝜏 ⊲⊳ 𝑁 𝜌1

𝑀𝜏 ⊲⊳ 𝑁 𝜌1
: 𝜌1 ⇒ 𝜌2

Casts and run-time errors are not considered syntactic terms of

the source language, such as applications or variables. Instead, they

denote transformations between types and typed expressions, i.e.

their presence in the language comes solely from types and not

from terms. So, they play no role in deciding whether an expression

is syntactically equivalent to another, and thus are treated as void

elements in the above definitions.

5.1 Flow Marking
Before compiling expressions into the cast calculus, we must add

annotations that guarantee the correct flow of terms from argument

positions to their respective variable occurrences. According to

definitions 4.1 and 4.2, when applying a function to an argument,

the Dyn type is thought of a yet unknown static type. In _𝑥 :

Dyn . 𝑐
Dyn

0
(𝑥) + 1

Int
, the Dyn type can be thought of as being

the Int type, but with a run-time type verification. In the presence

of non-commutative and non-idempotent intersection types, this

meaning of the Dyn type differs slightly. We can have expressions

A Typed Lambda Calculus with Gradual Intersection Types Conference’17, July 2017, Washington, DC, USA

Gradual Intersection Type System (Γ ⊢∧𝐺 Π𝜎
: 𝜎) rules and

[T-App]

Γ1 ⊢∧𝐶𝐶 𝑀𝜎→𝜏
: 𝜎 → 𝜏

Γ2 ⊢∧𝐶𝐶 Π𝜎
: 𝜎

Γ1 ∧ Γ2 ⊢∧𝐶𝐶 𝑀𝜎→𝜏 Π𝜎
: 𝜏

[T-Add]

Γ1 ⊢∧𝐶𝐶 𝑀 Int
: Int

Γ2 ⊢∧𝐶𝐶 𝑁 Int
: Int

Γ1 ∧ Γ2 ⊢∧𝐶𝐶 𝑀 Int + 𝑁 Int
: Int

[T-Cast]

Γ ⊢∧𝐶𝐶 𝑀𝜏
: 𝜏 𝜏 ∼ 𝜌

Γ ⊢∧𝐶𝐶 𝑀𝜏
: 𝜏 ⇒ 𝜌 : 𝜌

[T-Wrong]

∅ ⊢∧𝐶𝐶 wrong
𝜎
: 𝜎

Figure 3: Gradual Intersection Cast Calculus (Γ ⊢∧𝐶𝐶 Π𝜎
: 𝜎)

with several instances of the Dyn type:

(_𝑥 : Dyn ∧ Dyn . 𝑐
Dyn

0
(𝑥) 𝑐Dyn

0
(𝑥))

(_𝑦 : Int → Int . 𝑐 Int→Int

0
(𝑦) | _𝑧 : Int . 𝑐 Int

0
(𝑧))

These can be thought of as different, yet unknown, static types,

with a delayed type verification in run-time. The first occurrence,

appearing on the left of the ∧ and also on the first coercion, can

be thought of as the type (Int → Int) → Int → Int. The second

occurrence, appearing on the right of the ∧ and also on the second

coercion, can be thought of as the type Int → Int. Therefore, since

these two Dyn occurrences represent two different types, they will

correspond to distinct components of the argument parallel term.

Operational semantics must distinguish these types, and keep the

flow of arguments to their respective occurrences [9] as intended.

The first term in the parallel should flow to the first occurrence

of 𝑥 while the second term should flow to the second occurrence.

However, since the different occurrences are typed with the same

Dyn type, it is possible that the first component in the parallel

term flows to both of them. This erroneous behaviour originates an

expression which is not the intention of the programmer and that

leads to a wrong error: (_𝑦 : Int → Int . 𝑐 Int→Int

0
(𝑦)) (_𝑦 : Int →

Int . 𝑐 Int→Int

0
(𝑦)).

Our solution is to mark coercions with an index, called flowmark,

according to the position of its type in the lambda abstraction’s type

annotation. Having both coercions and parallel term components

ordered w.r.t. the order of instances in lambda abstraction anno-

tations facilitates this. So, we effectively link each component in

the argument parallel term with its corresponding coercion in the

body. We define flow marking in figure 4, and also in definitions 5.3

and 5.4. We overload the type connective ∧ to also accept indices,

and use 𝑖 (possibly with subscripts) to range over lists of indices.

We then overload the ∧ operator from typing contexts, definition

3.4, to also accept flow contexts, and reuse the definition.

Definition 5.3 (Flow Context). A flow context is a finite set, of the

form {𝑥1 : 𝑖1, . . . , 𝑥𝑛 : 𝑖𝑛}, of (variable, list of indices) pairs called
flow bindings, where 𝑖1 = 𝑖11∧. . .∧𝑖1𝑗 and . . . and 𝑖𝑛 = 𝑖𝑛1∧. . .∧𝑖𝑛𝑚 .

We use Σ (possibly with subscripts) to range over flow contexts, and

write ∅ for an empty context. We write 𝑥 : 𝑖 for the context {𝑥 : 𝑖}
and abbreviate 𝑥 : 𝑖 ≡ {𝑥 : 𝑖}; and write Σ1, Σ2 for the union of

contexts Σ1 and Σ2, assuming Σ1 and Σ2 are disjoint, and abreviate

Σ1, Σ2 ≡ Σ1 ∪ Σ2.

Definition 5.4 (Flow Marking on Contexts). We obtain the corre-

sponding flow context from a typing context by replacing the types

with indices: Γ ↩→ Σ ⇐⇒ Γ, 𝑥 : 𝜏1 ∧ . . . ∧ 𝜏𝑛 ↩→ Σ, 𝑥 : 1 ∧ . . . ∧ 𝑛;

and ∅ ↩→ ∅. We define the abbreviation (Γ)↩→ as follows: (Γ)↩→ = Σ,
if Γ ↩→ Σ.

Example 5.5. Consider the previous example after flow marking:

(_𝑥 : Dyn ∧ Dyn . 𝑐
Dyn

1
(𝑥) 𝑐Dyn

2
(𝑥))

(_𝑦 : Int → Int . 𝑐 Int→Int

1
(𝑦) | _𝑧 : Int . 𝑐 Int

1
(𝑧))

Notice that the first coercion in the _-abstraction, with a mark

of 1, will be replaced by the first component in the parallel term.

Similarly, the second coercion, with mark 2, will be replaced by the

second component. Both coercions in the parallel term are marked

with 1 since there is only one instance in the annotation. Flow

marking is type-preserving and monotonic w.r.t. precision [40]:

Theorem 5.6 (Type Preservation of FlowMarking). If Γ ⊢∧𝐺
Π𝜎

: 𝜎 then Σ ⊢∧𝐺 Π𝜎 ↩→ Υ𝜎 and Γ ⊢∧𝐺 Υ𝜎 : 𝜎 , where Γ ↩→ Σ.

Proof. By induction on the length of the derivation tree of

Γ ⊢∧𝐺 Π𝜎
: 𝜎 . □

Theorem 5.7 (Monotonicity of Flow Marking). If Σ1 ⊢∧𝐺
Π𝜎
1
↩→ Π𝜎

2
and Σ2 ⊢∧𝐺 Υ𝜐

1
↩→ Υ𝜐

2
and Υ𝜐

1
⊑ Π𝜎

1
then Υ𝜐

2
⊑ Π𝜎

2
.

Proof. By induction on the length of the derivation tree of

Σ1 ⊢∧𝐺 Π𝜎
1
↩→ Π𝜎

2
. □

5.2 Cast Insertion
After applying the marking operation, the expression can be com-

piled into the cast calculus by the rules defined in figure 5. Most

rules are straightforward, recursively inserting casts in the sub-

expressions, but rule [C-App] deserves a thorough explanation.

Example 5.8. Going back to our example in subsection 4.2, we

insert casts as follows:

((_𝑥 : Dyn ∧ Dyn . (𝑐Dyn
1

(𝑥) : Dyn ⇒ Dyn
2)

(𝑐Dyn
2

(𝑥) : Dyn ⇒ Dyn))
: Dyn ∧ Dyn → Dyn ⇒ Dyn ∧ Dyn → Dyn)

((_𝑦 : 𝐼2 . 𝑐𝐼
2

1
(𝑦)) :𝐼4 ⇒ Dyn | (_𝑧 : Int . 𝑐 Int

1
(𝑧)) : 𝐼2 ⇒ Dyn)

Inserting casts in function terms is simple: make the source type

the type of the function, and the target type the result of pattern

matching. In the example, an identity cast arises, since the source

and target types are the same. Inserting casts in argument terms

is not so simple. When type checking, we compare each element

Conference’17, July 2017, Washington, DC, USA Pedro Ângelo and Mário Florido

[M-Con]

∅ ⊢∧𝐺 𝑘𝐵 ↩→ 𝑘𝐵
[M-Var]

𝑥 : 𝑖 ⊢∧𝐺 𝑐𝜏
0
(𝑥) ↩→ 𝑐𝜏𝑖 (𝑥)

[M-AbsI]

Σ, (𝑥 : 𝜎)↩→ ⊢∧𝐺 𝑀𝜏 ↩→ 𝑁𝜏

Σ ⊢∧𝐺 _𝑥 : 𝜎 . 𝑀𝜏 ↩→ _𝑥 : 𝜎 . 𝑁𝜏
𝑥 ∈ 𝑓 𝑣 (𝑀𝜏)

[M-AbsK]

Σ ⊢∧𝐺 𝑀𝜏 ↩→ 𝑁𝜏

Σ ⊢∧𝐺 _𝑥 : 𝜎 . 𝑀𝜏 ↩→ _𝑥 : 𝜎 . 𝑁𝜏
𝑥 ∉ 𝑓 𝑣 (𝑀𝜏) [M-App]

Σ1 ⊢∧𝐺 𝑀𝜏 ↩→ 𝑁𝜏 Σ2 ⊢∧𝐺 Π𝜎 ↩→ Υ𝜎

Σ1 ∧ Σ2 ⊢∧𝐺 𝑀𝜏 Π𝜎 ↩→ 𝑁𝜏 Υ𝜎

[M-Add]

Σ1 ⊢∧𝐺 𝑀𝜏
1
↩→ 𝑁𝜏

1
Σ2 ⊢∧𝐺 𝑀

𝜌

2
↩→ 𝑁

𝜌

2

Σ1 ∧ Σ2 ⊢∧𝐺 𝑀𝜏
1
+𝑀

𝜌

2
↩→ 𝑁𝜏

1
+ 𝑁

𝜌

2

[M-Par]

Σ1 ⊢∧𝐺 𝑀
𝜏1
1

↩→ 𝑁
𝜏1
1

. . . Σ𝑛 ⊢∧𝐺 𝑀
𝜏𝑛
𝑛 ↩→ 𝑁

𝜏𝑛
𝑛

Σ1 ∧ . . . ∧ Σ𝑛 ⊢∧𝐺 𝑀
𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛 ↩→ 𝑁

𝜏1
1

| . . . | 𝑁𝜏𝑛
𝑛

Figure 4: Flow Marking (Σ ⊢∧𝐺 Π𝜎 ↩→ Υ𝜎)

[C-Con]

k is a constant of base type B

∅ ⊢∧𝐶𝐶 𝑘𝐵 { 𝑘𝐵 : 𝐵
[C-Var]

𝑥 : 𝜏 ⊢∧𝐶𝐶 𝑐𝜏𝑖 (𝑥) { 𝑐𝜏𝑖 (𝑥) : 𝜏

[C-AbsI]

Γ, 𝑥 : 𝜎 ⊢∧𝐶𝐶 𝑀𝜏 { 𝑁𝜏
: 𝜏

Γ ⊢∧𝐶𝐶 _𝑥 : 𝜎 . 𝑀𝜏 { _𝑥 : 𝜎 . 𝑁𝜏
: 𝜎 → 𝜏

𝑥 ∈ 𝑓 𝑣 (𝑀𝜏) [C-AbsK]

Γ ⊢∧𝐶𝐶 𝑀𝜏 { 𝑁𝜏
: 𝜏

Γ ⊢∧𝐶𝐶 _𝑥 : 𝜎 . 𝑀𝜏 { _𝑥 : 𝜎 . 𝑁𝜏
: 𝜎 → 𝜏

𝑥 ∉ 𝑓 𝑣 (𝑀𝜏)

[C-App]

Γ1 ⊢∧𝐶𝐶 𝑀𝜌 { 𝑁 𝜌
: 𝜌 𝜌 ▷ 𝜎 → 𝜏 Γ2 ⊢∧𝐶𝐶 Π𝜐 { Υ𝜐 : 𝜐 𝜐 ∼ 𝜎

Γ1 ∧ Γ2 ⊢∧𝐶𝐶 𝑀𝜌 Π𝜐 { (𝑁 𝜌
: 𝜌 ⇒ 𝜎 → 𝜏) (Υ𝜐 : 𝜐 ⇒∧ 𝜎) : 𝜏

[C-Add]

Γ1 ⊢∧𝐶𝐶 𝑀𝜏
1
{ 𝑁𝜏

1
: 𝜏 𝜏 ▷ Int Γ2 ⊢∧𝐶𝐶 𝑀

𝜌

2
{ 𝑁

𝜌

2
: 𝜌 𝜌 ▷ Int

Γ1 ∧ Γ2 ⊢∧𝐶𝐶 𝑀𝜏
1
+𝑀

𝜌

2
{ (𝑁𝜏

1
: 𝜏 ⇒ Int) + (𝑁 𝜌

2
: 𝜌 ⇒ Int) : Int

[C-Par]

Γ1 ⊢∧𝐶𝐶 𝑀
𝜏1
1
{ 𝑁

𝜏1
1

: 𝜏1 . . . Γ𝑛 ⊢∧𝐶𝐶 𝑀
𝜏𝑛
𝑛 { 𝑁

𝜏𝑛
𝑛 : 𝜏𝑛

Γ1 ∧ . . . ∧ Γ𝑛 ⊢∧𝐶𝐶 𝑀
𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛 { 𝑁

𝜏1
1

| . . . | 𝑁𝜏𝑛
𝑛 : 𝜏1 ∧ . . . ∧ 𝜏𝑛

∀𝑖 . 𝑟𝑎𝑛𝑘 (𝜏𝑖) = 0

Π𝜎 = 𝑀
𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛 𝜎 = 𝜏1 ∧ . . . ∧ 𝜏𝑛 𝜐 = 𝜌1 ∧ . . . ∧ 𝜌𝑛

Π𝜎
: 𝜎 ⇒∧ 𝜐 = 𝑀

𝜏1
1

: 𝜏1 ⇒ 𝜌1 | . . . | 𝑀𝜏𝑛
𝑛 : 𝜏𝑛 ⇒ 𝜌𝑛

Figure 5: Gradual Intersection Cast Insertion (Γ ⊢∧𝐶𝐶 Π𝜎 { Υ𝜎 : 𝜎)

of the domain of the function’s type with the appropriate element

of the type of the argument: Dyn ∼ (Int → Int) → Int → Int and

Dyn ∼ (Int → Int). Therefore, we add casts in each component

of the parallel term, from its respective type to the type they are

compared with using the ∼ relation. In a way, we add a cast from

one sequence type to another, with their elements split between the

components of the parallel term, according to Π𝜎
: 𝜎 ⇒∧ 𝜐. Cast

insertion is type-preserving and monotonic w.r.t. precision [40]:

Theorem 5.9 (Type Preservation of Cast Insertion). If Γ ⊢∧𝐺
Π𝜎

: 𝜎 then Γ ⊢∧𝐶𝐶 Π𝜎 { Υ𝜎 : 𝜎 and Γ ⊢∧𝐶𝐶 Υ𝜎 : 𝜎 .

Proof. By induction on the length of the derivation tree of

Γ ⊢∧𝐺 Π𝜎
: 𝜎 . □

Theorem 5.10 (Monotonicity of Cast Insertion). If Γ1 ⊢∧𝐶𝐶
Π𝜎
1
{ Π𝜎

2
: 𝜎 and Γ2 ⊢∧𝐶𝐶 Υ𝜐

1
{ Υ𝜐

2
: 𝜐 and Υ𝜐

1
⊑ Π𝜎

1
then

Υ𝜐
2
⊑ Π𝜎

2
and 𝜐 ⊑ 𝜎 .

Proof. By induction on the length of the derivation tree of

Γ1 ⊢∧𝐶𝐶 Π𝜎
1
{ Π𝜎

2
: 𝜎 . □

6 OPERATIONAL SEMANTICS
We now introduce our operational semantics, adapted from [16],

starting with the definition of normal forms and evaluation con-

texts:

Ground Types 𝐺 ::= 𝐵 | Dyn → Dyn

Values 𝑣 ::= 𝑘𝐵 | _𝑥 : 𝜎 . 𝑀𝜏 | 𝑣𝐺 : 𝐺 ⇒ Dyn |
𝑣𝜎→𝜏

: 𝜎 → 𝜏 ⇒ 𝜐 → 𝜌

Results 𝑟 ::= 𝑣𝜏 | wrong𝜏

Parallel Values 𝜋 ::= (𝑣𝜏1
1

| . . . | 𝑣𝜏𝑛𝑛) | wrong𝜎 𝑛 ≥ 1

Evaluation Contexts 𝐸 ::= □ | 𝐸 Π𝜎 | 𝑣𝜏 𝐸 | 𝐸 +𝑀𝜏 |
𝑣𝜏 + 𝐸 | 𝐸 : 𝜏 ⇒ 𝜌

Ground types are used as a bridgewhen comparing different gradual

types, carrying the information of the type constructor. Besides the

standard normal forms of the _-calculus, we also treat casts as values

depending on their types. We consider both casts from a ground

type to a Dyn type, and casts from a function type to a different

function type, as values. In our language, wrong
𝜏
may be a normal

A Typed Lambda Calculus with Gradual Intersection Types Conference’17, July 2017, Washington, DC, USA

form, but its behaviour is different than those of values: it is pushed

upwards along the syntactic tree. We distinguish between values

and wrong
𝜏
, and consider both as results. Parallel values are either

parallel terms composed solely of values, or a wrong
𝜎
. Therefore,

if there’s a wrong
𝜏
in any component, then it is not considered a

parallel value, since the wrong
𝜏
still needs to be pushed upwards.

We write 𝐸 [Π𝜎] for the term obtained by replacing the hole in 𝐸

by the term Π𝜎
. We employ the call-by-value reduction strategy,

as evidenced by our formulation of evaluation contexts.

Casts must be reduced to their normal form according to the

rules of figure 6. Rules [EC-Identity] and [EC-Succeed] corre-

spond to a successful cast reduction, i.e. the run-time check suc-

ceeded. Rules [EC-Application], [EC-Ground] and [EC-Expand]

propagate casts through the expression. Rule [EC-Application]

allows the verification of an application (the definition of ⇒∧ is

in figure 5), assuming 𝜋𝜐 is not a wrong . This is done by wrapping

function casts around the argument and the whole expression, tak-

ing into account contravariance and covariance, respectively. Rules

[EC-Ground] and [EC-Expand] reformulate the types within these

checks, by passing them through ground types. Finally, the failure

of a run-time check is given by rule [EC-Fail].

We also need reduction rules for lambda expressions. We intro-

duce the gradual operational semantics in figure 8. The counter-

part static operational semantics, written as −→∧, is equivalent
to −→∧𝐶𝐶 , except that casts and run-time errors are not included

in the syntax, and both cast handler rules and rules [E-Push] and

[E-Wrong] are not defined, as seen in figure 7.

Our calculus’ reduction strategy is call-by-value, i.e. no reduction

inside the body of a lambda abstraction, so only closed terms are

evaluated. Therefore, term variables cannot be swapped, removed

or duplicated, ensuring reduction preserves non-idempotent and

non-commutative intersection types. The purpose of the flowmarks

becomes clear in rule [E-Beta]: the contraction of the beta-redex is

performed by replacing each coercion with flow mark i, with the

parallel term component in the ith position:

Definition 6.1 (Projection on Typed Parallel Values). If 𝜋𝜎 =

𝑣
𝜌1
1

| . . . | 𝑣𝜌𝑛𝑛 is a typed parallel value, 𝜎 = 𝜌1 ∧ . . . ∧ 𝜌𝑛 and

𝜌 ∈ 𝜌1 ∧ . . . ∧ 𝜌𝑛 then: ⟨𝑣𝜌1
1

| . . . | 𝑣𝜌𝑛𝑛 ⟩𝜌
𝑖

𝑑𝑒 𝑓
= 𝑣

𝜌𝑖
𝑖

if 𝜌𝑖 = 𝜌

Flow marking, in figure 4, ensures the types of the coercions

match the types of the component in the parallel term, and so, the

condition 𝜌𝑖 = 𝜌 always holds.

During reduction, any wrong
𝜎
is pushed upwards in the syntac-

tic tree, according to rule [E-Wrong]. However, when reducing

a parallel term, components which are not yet a result are simul-

taneously reduced one step, via rule [E-Par]. This means wrong
𝜏

can arise in a component, in which case wrong
𝜏
is pushed out, via

rule [E-Push], effectively substituting the parallel term. If wrong
𝜏

doesn’t arise in any component of a parallel term, then that parallel

term is considered a value.

We show several important properties, including those from [40],

that hold for our operational semantics. We first show our calculus

is a conservative extension of its static counterpart. Therefore, when

no dynamic types are used, the calculus behaves as a static calculus,

i.e. no type checking is delayed until run-time.

Theorem 6.2 (Conservative Extension of Operational Se-

mantics). If Π𝜎
is static and 𝜎 is a static type, then Π𝜎 −→∧

Υ𝜎 ⇐⇒ Π𝜎 −→∧𝐶𝐶 Υ𝜎 .

Proof. By structural induction on evaluation contexts, for both

directions, where the base case is by induction on the length of the

reductions using −→∧ and −→∧𝐶𝐶 . □

Another fundamental property is that of type safety, which com-

prises the two theorems below.

Theorem 6.3 (Type Preservation). If ∅ ⊢∧𝐶𝐶 Π𝜎
: 𝜎 and

Π𝜎 −→∧𝐶𝐶 Υ𝜎 then ∅ ⊢∧𝐶𝐶 Υ𝜎 : 𝜎 .

Proof. By structural induction on evaluation contexts, where

the base case is by induction on the length of the reduction using

−→∧𝐶𝐶 . □

Theorem 6.4 (Progress). If ∅ ⊢∧𝐶𝐶 Π𝜎
: 𝜎 then either Π𝜎

is a

parallel value or ∃Υ𝜎 such that Π𝜎 −→∧𝐶𝐶 Υ𝜎 .

Proof. By induction on the length of the derivation tree of

∅ ⊢∧𝐶𝐶 Π𝜎
: 𝜎 . □

Gradual Guarantee is a useful property, as it ensures that evolv-

ing type annotations, from less precise to more precise types and

vice-versa, doesn’t cause unexpected behaviour. In particular, tak-

ing a well-typed program and making its type annotations less

precise, i.e. introducing more dynamic type annotations, doesn’t

change the behaviour of the program, as it still reduces to a value.

On the other hand, making type annotations more precise either

causes the program to evaluate the same, or it might cause a run-

time type error. The proof of Gradual Guarantee is arguably the

most technically challenging proof in this paper, requiring four

lemmas that handle specific cases:

Lemma 6.5 (Extra Cast on the Left). If ∅ ⊢∧𝐶𝐶 𝑣
𝜏1
1

: 𝜏1,

∅ ⊢∧𝐶𝐶 𝑣
𝜏2
2

: 𝜏2, 𝑣
𝜏2
2

⊑ 𝑣
𝜏1
1

and 𝜏2 ⊑ 𝜏1 and 𝜏3 ⊑ 𝜏1 then 𝑣
𝜏2
2

: 𝜏2 ⇒
𝜏3 −→∗

∧𝐶𝐶 𝑣
𝜏3
3

and 𝑣
𝜏3
3

⊑ 𝑣
𝜏1
1
.

Proof. By case analysis on 𝜏2 and 𝜏3: □

Lemma 6.6 (Catchup to Value on the Right). If ∅ ⊢∧𝐶𝐶 𝑣𝜏 : 𝜏

and ∅ ⊢∧𝐶𝐶 𝑀𝜌
: 𝜌 and 𝑀𝜌 ⊑ 𝑣𝜏 then 𝑀𝜌 −→∗

∧𝐶𝐶 𝑣 ′𝜌 and

𝑣 ′𝜌 ⊑ 𝑣𝜏 .

Proof. By induction on the length of the derivation tree of

𝑀𝜌 ⊑ 𝑣𝜏 . □

Lemma 6.7 (Simulation of Function Application). Assume

∅ ⊢∧𝐶𝐶 _𝑥 : 𝜎 . 𝑀𝜏
: 𝜎 → 𝜏 and ∅ ⊢∧𝐶𝐶 𝜋𝜎 : 𝜎 , ∅ ⊢∧𝐶𝐶 𝑣 ′𝜐→𝜌

:

𝜐 → 𝜌 and ∅ ⊢∧𝐶𝐶 𝜋 ′𝜐 : 𝜐 and 𝜐 → 𝜌 ⊑ 𝜎 → 𝜏 . If 𝑣 ′𝜐→𝜌 ⊑
_𝑥 : 𝜎 . 𝑀𝜏

and 𝜋 ′𝜐 ⊑ 𝜋𝜎 then 𝑣 ′𝜐→𝜌 𝜋 ′𝜐 −→∗
∧𝐶𝐶 𝑀′𝜌

, 𝑀′𝜌 ⊑
[𝑐𝜏 ′
𝑖
(𝑥) ↦→ ⟨𝜋𝜎 ⟩𝜏 ′

𝑖
] 𝑀𝜏

and ∅ ⊢∧𝐶𝐶 𝑀′𝜌
: 𝜌 .

Proof. By induction on the length of the derivation tree of

𝑣 ′𝜐→𝜌 ⊑ _𝑥 : 𝜎 . 𝑀𝜏
. □

Lemma 6.8 (Simulation of Unwrapping). Assume ∅ ⊢∧𝐶𝐶
𝑣𝜎→𝜏

: 𝜎 → 𝜏 and ∅ ⊢∧𝐶𝐶 𝜋𝜎
′
: 𝜎′, ∅ ⊢∧𝐶𝐶 𝑣 ′𝜐→𝜌

: 𝜐 → 𝜌

and ∅ ⊢∧𝐶𝐶 𝜋 ′𝜐 : 𝜐 and 𝜐 → 𝜌 ⊑ 𝜎 → 𝜏 . If 𝑣 ′𝜐→𝜌 ⊑ 𝑣𝜎→𝜏
: 𝜎 →

𝜏 ⇒ 𝜎′ → 𝜏 ′ and 𝜋 ′𝜐 ⊑ 𝜋𝜎
′
then 𝑣 ′𝜐→𝜌 𝜋 ′𝜐 −→∗

∧𝐶𝐶 𝑀𝜌
and

𝑀𝜌 ⊑ 𝑣𝜎→𝜏 (𝜋𝜎 ′
: 𝜎′ ⇒∧ 𝜎) : 𝜏 ⇒ 𝜏 ′.

Conference’17, July 2017, Washington, DC, USA Pedro Ângelo and Mário Florido

[EC-Identity] 𝑣𝜏 : 𝜏 ⇒ 𝜏 −→∧𝐶𝐶 𝑣𝜏

[EC-Application] (𝑣𝜎→𝜏
: 𝜎 → 𝜏 ⇒ 𝜐 → 𝜌) 𝜋𝜐 −→∧𝐶𝐶 (𝑣𝜎→𝜏 (𝜋𝜐 : 𝜐 ⇒∧ 𝜎)) : 𝜏 ⇒ 𝜌 if 𝜋𝜐 ≠ wrong

𝜐

[EC-Succeed] 𝑣𝐺 : 𝐺 ⇒ Dyn : Dyn ⇒ 𝐺 −→∧𝐶𝐶 𝑣𝐺

[EC-Fail] 𝑣𝐺1
: 𝐺1 ⇒ Dyn : Dyn ⇒ 𝐺2 −→∧𝐶𝐶 wrong

𝐺2
if 𝐺1 ≠ 𝐺2

[EC-Ground] 𝑣𝜏 : 𝜏 ⇒ Dyn −→∧𝐶𝐶 𝑣𝜏 : 𝜏 ⇒ 𝐺 : 𝐺 ⇒ Dyn if 𝜏 ≠ Dyn, 𝜏 ≠ 𝐺 and 𝜏 ∼ 𝐺

[EC-Expand] 𝑣Dyn : Dyn ⇒ 𝜏 −→∧𝐶𝐶 𝑣Dyn : Dyn ⇒ 𝐺 : 𝐺 ⇒ 𝜏 if 𝜏 ≠ Dyn, 𝜏 ≠ 𝐺 and 𝜏 ∼ 𝐺

Figure 6: Cast Handler Reduction Rules (Π𝜎 −→∧𝐶𝐶 Υ𝜎)

[E-Beta]

𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑐
𝜌

𝑖
(𝑥) 𝑖𝑛 𝑀𝜏

(_𝑥 : 𝜎 . 𝑀𝜏) 𝜋𝜎 −→∧ [𝑐𝜌
𝑖
(𝑥) ↦→ ⟨𝜋𝜎 ⟩𝜌

𝑖
] 𝑀𝜏

[E-Add]

𝑘3 is the sum of 𝑘1 and 𝑘2

𝑘 Int
1

+ 𝑘 Int
2

−→∧ 𝑘 Int
3

[E-Ctx]

Π𝜎 −→∧ Υ𝜎

𝐸 [Π𝜎] −→∧ 𝐸 [Υ𝜎]
[E-Par]

𝑀
𝜏1
1

−→∧ 𝑁
𝜏1
1

. . . 𝑀
𝜏𝑛
𝑛 −→∧ 𝑁

𝜏𝑛
𝑛 𝑛 > 1

𝑀
𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛 −→∧ 𝑁

𝜏1
1

| . . . | 𝑁𝜏𝑛
𝑛

Figure 7: Static Operational Semantics (Π𝜎 −→∧ Υ𝜎)

[E-Beta]

𝜋𝜎 ≠ wrong
𝜎 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑐

𝜌

𝑖
(𝑥) 𝑖𝑛 𝑀𝜏

(_𝑥 : 𝜎 . 𝑀𝜏) 𝜋𝜎 −→∧𝐶𝐶 [𝑐𝜌
𝑖
(𝑥) ↦→ ⟨𝜋𝜎 ⟩𝜌

𝑖
] 𝑀𝜏

[E-Ctx]

Π𝜎 −→∧𝐶𝐶 Υ𝜎

𝐸 [Π𝜎] −→∧𝐶𝐶 𝐸 [Υ𝜎]
[E-Wrong]

∅ ⊢∧𝐶𝐶 𝐸 [wrong𝜎] : 𝜏
𝐸 [wrong𝜎] −→∧𝐶𝐶 wrong

𝜏

[E-Add]

𝑘3 is the sum of 𝑘1 and 𝑘2

𝑘 Int
1

+ 𝑘 Int
2

−→∧𝐶𝐶 𝑘 Int
3

[E-Push]

𝜎 = 𝜏1 ∧ . . . ∧ 𝜏𝑛 ∃𝑖 . 𝑟𝜏𝑖
𝑖

= wrong
𝜏𝑖

𝑟
𝜏1
1

| . . . | 𝑟𝜏𝑛𝑛 −→∧𝐶𝐶 wrong
𝜎

[E-Par]

∀𝑖 . either𝑀𝜏𝑖
𝑖

is a result and𝑀
𝜏𝑖
𝑖

= 𝑁
𝜏𝑖
𝑖

or𝑀
𝜏𝑖
𝑖

−→∧𝐶𝐶 𝑁
𝜏𝑖
𝑖

∃𝑖 . 𝑀𝜏𝑖
𝑖

is not a result 𝑛 > 1

𝑀
𝜏1
1

| . . . | 𝑀𝜏𝑛
𝑛 −→∧𝐶𝐶 𝑁

𝜏1
1

| . . . | 𝑁𝜏𝑛
𝑛

Figure 8: Cast Calculus Operational Semantics (Π𝜎 −→∧𝐶𝐶 Υ𝜎)

Proof. By induction on the length of the derivation tree of

𝑣 ′𝜐→𝜌 ⊑ 𝑣𝜎→𝜏
: 𝜎 → 𝜏 ⇒ 𝜎′ → 𝜏 ′. □

Lemma 6.9 (Simulation of More Precise Programs). For all

Υ𝜐
1
⊑ Π𝜎

1
such that ∅ ⊢∧𝐶𝐶 Π𝜎

1
: 𝜎 and ∅ ⊢∧𝐶𝐶 Υ𝜐

1
: 𝜐, if Π𝜎

1
−→∧𝐶𝐶

Π𝜎
2
then Υ𝜐

1
−→∗

∧𝐶𝐶 Υ𝜐
2
and Υ𝜐

2
⊑ Π𝜎

2
.

Proof. By induction on the length of the derivation tree of

Υ𝜐
1
⊑ Π𝜎

1
, followed by case analysis on Π𝜎

1
−→∧𝐶𝐶 Π𝜎

2
, and using

lemmas 6.5, 6.6, 6.7 and 6.8, and theorems 6.3 and 6.4. □

Theorem 6.10 (Gradual Guarantee). For all Υ𝜐 ⊑ Π𝜎
such

that ∅ ⊢∧𝐶𝐶 Π𝜎
: 𝜎 and ∅ ⊢∧𝐶𝐶 Υ𝜐 : 𝜐, and assuming 𝜋𝜎

1
≠ wrong

𝜎

and 𝜋𝜐
2
≠ wrong

𝜐
:

(1) if Π𝜎 −→∗
∧𝐶𝐶 𝜋𝜎

1
then Υ𝜐 −→∗

∧𝐶𝐶 𝜋𝜐
2
and 𝜋𝜐

2
⊑ 𝜋𝜎

1
.

if Π𝜎
diverges then Υ𝜐 diverges.

(2) if Υ𝜐 −→∗
∧𝐶𝐶 𝜋𝜐

2
then either Π𝜎 −→∗

∧𝐶𝐶 𝜋𝜎
1
and 𝜋𝜐

2
⊑ 𝜋𝜎

1
,

or Π𝜎 −→∗
∧𝐶𝐶 wrong

𝜎
.

if Υ𝜐 diverges then Π𝜎
diverges or Π𝜎 −→∗

∧𝐶𝐶 wrong
𝜎
.

Proof. The proof for part 1 follows by induction on the length

of the reduction sequence using lemma 6.9; for the diverging case,

it follows by simulation (lemma 6.9) on the infinite reduction se-

quence. Part 2 is a corollary of part 1. □

In [9], the reduction of terms is synchronized between com-

ponents of parallel terms since they are equivalent modulo 𝛼-

conversion. In our language, one component may have more casts

than another, or be reduced to a wrong
𝜏
while the other proceeds

reduction. Therefore, each component is independently reduced, as

shown in rule [E-Par]. We show that, after reduction, components

are all equivalent to each other, under the variant relation ⊲⊳ (defi-

nition 5.2), by showing reduction is confluent modulo ⊲⊳. Similar to

the proof of Gradual Guarantee, the main lemma also depends on

the following four auxiliary lemmas:

Lemma 6.11 (Extra Cast on the Right (Confluency)). If

∅ ⊢∧𝐶𝐶 𝑣
𝜏1
1

: 𝜏1, ∅ ⊢∧𝐶𝐶 𝑟
𝜏2
2

: 𝜏2, 𝑣
𝜏1
1

⊲⊳ 𝑟
𝜏2
2

then 𝑟
𝜏2
2

: 𝜏2 ⇒
𝜏3 −→∗

∧𝐶𝐶 𝑟
𝜏3
3

and 𝑣
𝜏1
1

⊲⊳ 𝑟
𝜏3
3
.

Proof. We divide this proof into 2 parts: either 𝑟
𝜏2
2

= wrong
𝜏2
;

or 𝑟
𝜏2
2

is a value 𝑣
𝜏2
2
, in which case we proceed by case analysis on

𝜏2 and 𝜏3. □

A Typed Lambda Calculus with Gradual Intersection Types Conference’17, July 2017, Washington, DC, USA

Lemma 6.12 (Catchup to Value on the Left (Confluency)). If

∅ ⊢∧𝐶𝐶 𝑣𝜏 : 𝜏 and ∅ ⊢∧𝐶𝐶 𝑁 𝜌
: 𝜌 and 𝑣𝜏 ⊲⊳ 𝑁 𝜌

then𝑁 𝜌 −→∗
∧𝐶𝐶 𝑟𝜌

and 𝑣𝜏 ⊲⊳ 𝑟𝜌 .

Proof. By induction on the length of the derivation tree of

𝑣𝜏 ⊲⊳ 𝑁 𝜌
. □

Lemma 6.13 (Simulation of Function Application (Conflu-

ency)). Assume ∅ ⊢∧𝐶𝐶 _𝑥 : 𝜎 . 𝑀𝜏
: 𝜎 → 𝜏 and ∅ ⊢∧𝐶𝐶 𝜋𝜎 : 𝜎 ,

∅ ⊢∧𝐶𝐶 𝑣 ′𝜐→𝜌
: 𝜐 → 𝜌 and ∅ ⊢∧𝐶𝐶 𝜋 ′𝜐 : 𝜐. If _𝑥 : 𝜎 . 𝑀𝜏 ⊲⊳

𝑣 ′𝜐→𝜌
and 𝜋𝜎 ⊲⊳ 𝜋 ′𝜐 then 𝑣 ′𝜐→𝜌 𝜋 ′𝜐 −→∗

∧𝐶𝐶 𝑀′𝜌
and [𝑐𝜏 ′

𝑖
(𝑥) ↦→

⟨𝜋𝜎 ⟩𝜏 ′
𝑖
] 𝑀𝜏 ⊲⊳ 𝑀′𝜌

.

Proof. By induction on the length of the derivation tree of

_𝑥 : 𝜎 . 𝑀𝜏 ⊲⊳ 𝑣 ′𝜐→𝜌
. □

Lemma 6.14 (Simulation of Unwrapping (Confluency)). As-

sume ∅ ⊢∧𝐶𝐶 𝑣𝜎→𝜏
: 𝜎 → 𝜏 and ∅ ⊢∧𝐶𝐶 𝜋𝜎

′
: 𝜎′, ∅ ⊢∧𝐶𝐶 𝑣 ′𝜐→𝜌

:

𝜐 → 𝜌 and ∅ ⊢∧𝐶𝐶 𝜋 ′𝜐 : 𝜐. If 𝑣𝜎→𝜏
: 𝜎 → 𝜏 ⇒ 𝜎′ → 𝜏 ′ ⊲⊳ 𝑣 ′𝜐→𝜌

and 𝜋𝜎
′
⊲⊳ 𝜋 ′𝜐 then 𝑣 ′𝜐→𝜌 𝜋 ′𝜐 −→∗

∧𝐶𝐶 𝑀𝜌
and 𝑣𝜎→𝜏 (𝜋𝜎 ′

: 𝜎′ ⇒∧
𝜎) : 𝜏 ⇒ 𝜏 ′ ⊲⊳ 𝑀𝜌

.

Proof. By induction on the length of the derivation tree of

𝑣𝜎→𝜏
: 𝜎 → 𝜏 ⇒ 𝜎′ → 𝜏 ′ ⊲⊳ 𝑣 ′𝜐→𝜌

. □

Lemma 6.15 (Simulation of Variant Programs). For all Π𝜎
1
⊲⊳

Υ𝜐
1
such that ∅ ⊢∧𝐶𝐶 Π𝜎

1
: 𝜎 and ∅ ⊢∧𝐶𝐶 Υ𝜐

1
: 𝜐, if Π𝜎

1
−→∧𝐶𝐶 Π𝜎

2

then there exists a Υ𝜐
2
such that Υ𝜐

1
−→∗

∧𝐶𝐶 Υ𝜐
2
and Π𝜎

2
⊲⊳ Υ𝜐

2
.

Proof. Proof by induction on the length of the derivation tree

of Π𝜎
1
⊲⊳ Υ𝜐

1
followed by case analysis on Π𝜎

1
−→∧𝐶𝐶 Π𝜎

2
, and using

lemmas 6.11, 6.12, 6.13 and 6.14, and theorems 6.3 and 6.4. □

Theorem 6.16 (Confluency of Operational Semantics). For

all Π𝜎 ⊲⊳ Υ𝜐 such that ∅ ⊢∧𝐶𝐶 Π𝜎
: 𝜎 and ∅ ⊢∧𝐶𝐶 Υ𝜐 : 𝜐, and

assuming 𝜋𝜎
1
≠ wrong

𝜎
, if Π𝜎 −→∗

∧𝐶𝐶 𝜋𝜎
1
then Υ𝜐 −→∗

∧𝐶𝐶 𝜋𝜐
2
and

𝜋𝜎
1
⊲⊳ 𝜋𝜐

2
.

Proof. By induction on the length of the reduction sequence

using lemma 6.15. □

Example 6.17. Finishing the example presented in subsections

4.2 and 5.2, we start with the compiled expression:

((_𝑥 : Dyn ∧ Dyn . (𝑐Dyn
1

(𝑥) : Dyn ⇒ Dyn
2)

(𝑐Dyn
2

(𝑥) : Dyn ⇒ Dyn))
: Dyn ∧ Dyn → Dyn ⇒ Dyn ∧ Dyn → Dyn)

((_𝑦 : 𝐼2 . 𝑐𝐼
2

1
(𝑦)) : 𝐼4 ⇒ Dyn | (_𝑧 : Int . 𝑐 Int

1
(𝑧)) : 𝐼2 ⇒ Dyn)

First, we get rid of the identity casts of the function with rule [EC-

Identity], and then we expand the casts of the arguments via rule

[EC-Ground].

((_𝑥 : Dyn ∧ Dyn . (𝑐Dyn
1

(𝑥) : Dyn ⇒ Dyn
2)

(𝑐Dyn
2

(𝑥) : Dyn ⇒ Dyn))

((_𝑦 : 𝐼2 . 𝑐𝐼
2

1
(𝑦)) :𝐼4 ⇒ Dyn

2
: Dyn

2 ⇒ Dyn |

(_𝑧 : Int . 𝑐 Int
1

(𝑧)) :𝐼2 ⇒ Dyn
2
: Dyn

2 ⇒ Dyn)
Since both function and arguments are values, we can proceed by

𝛽-reduction, [E-Beta]. Placing the arguments into the body of the

function leads to new casts, which are then reduced with rules

[EC-Succeed] and [EC-Identity].

((_𝑦 : 𝐼2 . 𝑐𝐼
2

1
(𝑦)) : 𝐼4 ⇒ Dyn

2)

((_𝑧 : Int . 𝑐 Int
1

(𝑧)) : 𝐼2 ⇒ Dyn
2
: Dyn

2 ⇒ Dyn)

By rule [EC-Application], the cast in the function is wrapped

around the argument and the application. This leads to new casts

that must be reduced until a value is reached, via [EC-Expand] and

[EC-Succeed].

((_𝑦 : 𝐼2 . 𝑐𝐼
2

1
(𝑦))

((_𝑧 : Int . 𝑐 Int
1

(𝑧)) : 𝐼2 ⇒ Dyn
2
: Dyn

2 ⇒ 𝐼2)) : 𝐼2 ⇒ Dyn

Finally, we apply the 𝛽-reduction rule [E-Beta], and then normalize

the casts with rule [EC-Ground].

(_𝑧 : Int . 𝑐 Int
1

(𝑧)) : 𝐼2 ⇒ Dyn
2
:

Dyn
2 ⇒ 𝐼2 : 𝐼2 ⇒ Dyn

2
: Dyn

2 ⇒ Dyn

7 CONCLUSION AND FUTUREWORK
In this paper we present a new gradual intersection typed calculus,

where dynamic annotations delay type-checking until the evalua-

tion phase. We are now working on a type inference algorithm to

automatically infer the static type information used in our calculus.

We plan to accomplish this by drawing inspiration from [26] and

our previous work in [5]. We also want to enhance the language

with blame tracking [2], a feature we have so far disregarded.

ACKNOWLEDGMENTS
This work was partially financially supported by the portuguese

Fundação para a Ciência e a Tecnologia, under the PhD grant num-

ber SFRH/BD/145183/2019 and by Base Funding - UIDB/00027/2020

of the Artificial Intelligence and Computer Science Laboratory –

LIACC - funded by national funds through the FCT/MCTES (PID-

DAC).

REFERENCES
[1] Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. 2018. Tight

typings and split bounds. Proc. ACM Program. Lang. 2, ICFP (2018), 94:1–94:30.

[2] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011.

Blame for All. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (Austin, Texas, USA) (POPL

’11). Association for Computing Machinery, New York, NY, USA, 201–214.

https://doi.org/10.1145/1926385.1926409

[3] Sandra Alves, Delia Kesner, and Daniel Ventura. 2019. A Quantitative Under-

standing of Pattern Matching. In 25th International Conference on Types for Proofs

and Programs, TYPES 2019 (LIPIcs, Vol. 175). 3:1–3:36.

[4] Pedro Ângelo and Mário Florido. 2018. Gradual Intersection Types. In Ninth

Workshop on Intersection Types and Related Systems, ITRS 2018, Oxford, U.K., 8

July 2018. https://pedroangelo.github.io/gradual-intersection-types.pdf

[5] Pedro Ângelo and Mário Florido. 2020. Type Inference for Rank 2 Gradual

Intersection Types. In Trends in Functional Programming, William J. Bowman and

Ronald Garcia (Eds.). Springer International Publishing, Cham, 84–120. https:

//doi.org/10.1007/978-3-030-47147-7_5

[6] Steffen van Bakel. 1996. Rank 2 Intersection Type Assignment in Term Rewriting.

Fundam. Inf. 26, 2 (May 1996), 141–166.

[7] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A

filter lambda model and the completeness of type assignment. Journal of Symbolic

Logic 48, 4 (1983), 931–940. https://doi.org/10.2307/2273659

[8] Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini,

and Betti Venneri. 2018. Java & Lambda: a Featherweight Story. Logical Methods in

Computer Science Volume 14, Issue 3 (Sept. 2018). https://doi.org/10.23638/LMCS-

14(3:17)2018

https://doi.org/10.1145/1926385.1926409
https://pedroangelo.github.io/gradual-intersection-types.pdf
https://doi.org/10.1007/978-3-030-47147-7_5
https://doi.org/10.1007/978-3-030-47147-7_5
https://doi.org/10.2307/2273659
https://doi.org/10.23638/LMCS-14(3:17)2018
https://doi.org/10.23638/LMCS-14(3:17)2018

Conference’17, July 2017, Washington, DC, USA Pedro Ângelo and Mário Florido

[9] Viviana Bono, Betti Venneri, and Lorenzo Bettini. 2008. A Typed Lambda Calculus

with Intersection Types. Theor. Comput. Sci. 398, 1–3 (May 2008), 95–113. https:

//doi.org/10.1016/j.tcs.2008.01.046

[10] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. 2017. Non-idempotent

intersection types for the Lambda-Calculus. Log. J. IGPL 25, 4 (2017), 431–464.

[11] Sébastien Carlier and J.B. Wells. 2005. Expansion: the Crucial Mechanism for

Type Inference with Intersection Types: A Survey and Explanation. Electronic

Notes in Theoretical Computer Science 136 (2005), 173 – 202. https://doi.org/10.

1016/j.entcs.2005.03.026 Proceedings of the Third International Workshop on

Intersection Types and Related Systems (ITRS 2004).

[12] Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and

Intersection Types. Proc. ACM Program. Lang. 1, ICFP, Article 41 (Aug. 2017),

28 pages. https://doi.org/10.1145/3110285

[13] Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek.

2019. Gradual Typing: A New Perspective. Proc. ACM Program. Lang. 3, POPL,

Article 16 (Jan. 2019), 32 pages. https://doi.org/10.1145/3290329

[14] Avik Chaudhuri. 2016. Flow: Abstract Interpretation of JavaScript for Type

Checking and Beyond. In Proceedings of the 2016 ACMWorkshop on Programming

Languages and Analysis for Security (Vienna, Austria) (PLAS ’16). Association for

Computing Machinery, New York, NY, USA, 1. https://doi.org/10.1145/2993600.

2996280

[15] Matteo Cimini and Jeremy G. Siek. 2016. The Gradualizer: A Methodology and

Algorithm for Generating Gradual Type Systems. In Proceedings of the 43rd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St.

Petersburg, FL, USA) (POPL ’16). ACM, New York, NY, USA, 443–455. https:

//doi.org/10.1145/2837614.2837632

[16] Matteo Cimini and Jeremy G. Siek. 2017. Automatically Generating the Dynamic

Semantics of Gradually Typed Languages. In Proceedings of the 44th ACM SIG-

PLAN Symposium on Principles of Programming Languages (Paris, France) (POPL

2017). ACM, New York, NY, USA, 789–803. https://doi.org/10.1145/3009837.

3009863

[17] M. Coppo and M. Dezani-Ciancaglini. 1980. An extension of the basic functional-

ity theory for the _-calculus. Notre Dame Journal of Formal Logic 21, 4 (10 1980),

685–693. https://doi.org/10.1305/ndjfl/1093883253

[18] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Patrick Sallé. 1979. Func-

tional Characterization of Some Semantic Equalities inside Lambda-Calculus. In

Automata, Languages and Programming, 6th Colloquium, July 16-20, 1979 (Lecture

Notes in Computer Science, Vol. 71). Springer, 133–146.

[19] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. 1981. Func-

tional Characters of Solvable Terms. Mathematical Logic Quar-

terly 27, 2-6 (1981), 45–58. https://doi.org/10.1002/malq.19810270205

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19810270205

[20] Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky. 2006.

A Core Calculus for Scala Type Checking. In Mathematical Foundations of Com-

puter Science 2006, Rastislav Královič and Paweł Urzyczyn (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 1–23.

[21] Ferruccio Damiani. 2003. Rank 2 Intersection Types for Local Definitions and

Conditional Expressions. ACM Trans. Program. Lang. Syst. 25, 4 (July 2003),

401–451. https://doi.org/10.1145/778559.778560

[22] Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti Venneri. 2019. In-

tersection Types in Java: Back to the Future. Springer International Publishing,

Cham, 68–86. https://doi.org/10.1007/978-3-030-22348-9_6

[23] Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual

Programs. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (Mumbai, India) (POPL ’15). ACM, New

York, NY, USA, 303–315. https://doi.org/10.1145/2676726.2676992

[24] Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual

Typing. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16). ACM,

New York, NY, USA, 429–442. https://doi.org/10.1145/2837614.2837670

[25] T. Jim. 1995. Rank 2 Type Systems and Recursive Definitions. Technical Report.

Cambridge, MA, USA.

[26] Trevor Jim. 1996. What Are Principal Typings and What Are They Good for?.

In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (St. Petersburg Beach, Florida, USA) (POPL ’96). ACM,

New York, NY, USA, 42–53. https://doi.org/10.1145/237721.237728

[27] Matthias Keil and Peter Thiemann. 2015. Blame Assignment for Higher-Order

Contracts with Intersection and Union. In Proceedings of the 20th ACM SIGPLAN

International Conference on Functional Programming (Vancouver, BC, Canada)

(ICFP 2015). Association for Computing Machinery, New York, NY, USA, 375–386.

https://doi.org/10.1145/2784731.2784737

[28] Delia Kesner and Pierre Vial. 2020. Non-idempotent types for classical calculi in

natural deduction style. Log. Methods Comput. Sci. 16, 1 (2020).

[29] A.J. Kfoury and J.B. Wells. 2004. Principality and type inference for intersection

types using expansion variables. Theoretical Computer Science 311, 1 (2004), 1 –

70. https://doi.org/10.1016/j.tcs.2003.10.032

[30] A. J. Kfoury and J. B. Wells. 1999. Principality and Decidable Type Inference for

Finite-rank Intersection Types. In Proceedings of the 26th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (San Antonio, Texas, USA)

(POPL ’99). ACM, New York, NY, USA, 161–174. https://doi.org/10.1145/292540.

292556

[31] Daniel Leivant. 1983. Polymorphic Type Inference. In Proceedings of the 10th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages (Austin,

Texas) (POPL ’83). Association for Computing Machinery, New York, NY, USA,

88–98. https://doi.org/10.1145/567067.567077

[32] Luigi Liquori and Simona Ronchi Della Rocca. 2007. Intersection-types à la

Church. Information and Computation 205, 9 (2007), 1371 – 1386. https://doi.

org/10.1016/j.ic.2007.03.005

[33] Luigi Liquori and Claude Stolze. 2019. The Delta-calculus: Syntax and Types. In

4th International Conference on Formal Structures for Computation and Deduction

(FSCD 2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 131), Her-

man Geuvers (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 28:1–28:20. https://doi.org/10.4230/LIPIcs.FSCD.2019.28

[34] Yuki Nishida and Atsushi Igarashi. 2019. Manifest Contracts with Intersection

Types. In Programming Languages and Systems - 17th Asian Symposium, APLAS

2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings (Lecture Notes

in Computer Science, Vol. 11893), Anthony Widjaja Lin (Ed.). Springer, 33–52.

https://doi.org/10.1007/978-3-030-34175-6_3

[35] G. Pottinger. 1980. A Type Assignment for the Strongly Normalizable Lambda-

Terms. In To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and

Formalism, J. Hindley and J. Seldin (Eds.). Academic Press, 561–577.

[36] John C. Reynolds. 1997. Design of the Programming Language Forsythe. Birkhäuser

Boston, Boston, MA, 173–233. https://doi.org/10.1007/978-1-4612-4118-8_9

[37] Simona Ronchi Della Rocca. 2003. Intersection Typed _-calculus. Electronic Notes

in Theoretical Computer Science 70, 1 (2003), 163 – 181. https://doi.org/10.1016/

S1571-0661(04)80496-1 ITRS ’02, Intersection Types and Related Systems (FLoC

Satellite Event).

[38] Jeremy G Siek and Walid Taha. 2006. Gradual typing for functional languages.

In Scheme and Functional Programming Workshop, Vol. 6. 81–92.

[39] Jeremy G. Siek and Manish Vachharajani. 2008. Gradual Typing with Unification-

based Inference. In Proceedings of the 2008 Symposium on Dynamic Languages

(Paphos, Cyprus) (DLS ’08). ACM, New York, NY, USA, Article 7, 12 pages. https:

//doi.org/10.1145/1408681.1408688

[40] JeremyG. Siek, MichaelM. Vitousek, Matteo Cimini, and John Tang Boyland. 2015.

Refined Criteria for Gradual Typing. In 1st Summit on Advances in Programming

Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs),

Vol. 32). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,

274–293. https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

[41] Stephanus Johannes Van Bakel. 1993. Intersection type disciplines in lambda calcu-

lus and applicative term rewriting systems. Amsterdam: Mathematisch Centrum.

[42] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. 2016. Refinement Types

for TypeScript. In Proceedings of the 37th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI

’16). Association for Computing Machinery, New York, NY, USA, 310–325.

https://doi.org/10.1145/2908080.2908110

[43] Joe B. Wells and Christian Haack. 2002. Branching Types. In Proceedings of the

11th European Symposium on Programming Languages and Systems (ESOP ’02).

Springer-Verlag, London, UK, UK, 115–132. http://dl.acm.org/citation.cfm?id=

645396.651968

[44] Jack Williams, J. Garrett Morris, and Philip Wadler. 2018. The Root Cause of

Blame: Contracts for Intersection and Union Types. Proc. ACM Program. Lang. 2,

OOPSLA, Article 134 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276504

https://doi.org/10.1016/j.tcs.2008.01.046
https://doi.org/10.1016/j.tcs.2008.01.046
https://doi.org/10.1016/j.entcs.2005.03.026
https://doi.org/10.1016/j.entcs.2005.03.026
https://doi.org/10.1145/3110285
https://doi.org/10.1145/3290329
https://doi.org/10.1145/2993600.2996280
https://doi.org/10.1145/2993600.2996280
https://doi.org/10.1145/2837614.2837632
https://doi.org/10.1145/2837614.2837632
https://doi.org/10.1145/3009837.3009863
https://doi.org/10.1145/3009837.3009863
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1002/malq.19810270205
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19810270205
https://doi.org/10.1145/778559.778560
https://doi.org/10.1007/978-3-030-22348-9_6
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/237721.237728
https://doi.org/10.1145/2784731.2784737
https://doi.org/10.1016/j.tcs.2003.10.032
https://doi.org/10.1145/292540.292556
https://doi.org/10.1145/292540.292556
https://doi.org/10.1145/567067.567077
https://doi.org/10.1016/j.ic.2007.03.005
https://doi.org/10.1016/j.ic.2007.03.005
https://doi.org/10.4230/LIPIcs.FSCD.2019.28
https://doi.org/10.1007/978-3-030-34175-6_3
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1016/S1571-0661(04)80496-1
https://doi.org/10.1016/S1571-0661(04)80496-1
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/2908080.2908110
http://dl.acm.org/citation.cfm?id=645396.651968
http://dl.acm.org/citation.cfm?id=645396.651968
https://doi.org/10.1145/3276504

	Abstract
	1 Introduction
	2 Related Work
	3 Intersection Types and Syntax
	3.1 Syntax

	4 Gradual Intersection Type System
	4.1 Consistency and Precision
	4.2 Type System

	5 Cast Calculus
	5.1 Flow Marking
	5.2 Cast Insertion

	6 Operational Semantics
	7 Conclusion and Future Work
	Acknowledgments
	References

